International Conference on Image Analysis and Processing

ICIAP 2015: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops pp 11-18 | Cite as

Evaluation of Residual-Based Local Features for Camera Model Identification

  • Francesco Marra
  • Giovanni Poggi
  • Carlo Sansone
  • Luisa Verdoliva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

Camera model identification is of interest for many applications. In-camera processes, specific of each model, leave traces that can be captured by features designed ad hoc, and used for reliable classification. In this work we investigate on the use of blind features based on the analysis of image residuals. In particular, features are extracted locally based on co-occurrence matrices of selected neighbors and then used to train an SVM classifier. Experiments on the well-known Dresden database show this approach to provide state-of-the-art performances.

Keywords

Camera model identification Local features Residuals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirchner, M., Gloe, T.: Forensic camera model identification. In: Ho, T., Li, S. (eds.) Handbook of Digital Forensics of Multimedia Data and Devices. Wiley-IEEE Press (2015)Google Scholar
  2. 2.
    Lukàš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security 1(2), 205–214 (2006)CrossRefGoogle Scholar
  3. 3.
    Filler, T., Fridrich, J., Goljan, M.: Using sensor pattern noise for camera model identification. In: IEEE International Conference on Image Processing, pp. 1296–1299 (2008)Google Scholar
  4. 4.
    Bayram, S., Sencar, H., Memon, N., Avcibas, I.: Source camera identification based on CFA interpolation. In: IEEE Int. Conference on Image Processing, pp. 69–72 (2005)Google Scholar
  5. 5.
    Popescu, A., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Swaminathan, A., Wu, M., Liu, K.J.R.: Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security 2(1), 91–105 (2007)CrossRefGoogle Scholar
  7. 7.
    Cao, H., Kot, A.: Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans. on Information Forensics and Security 4(4), 899–910 (2009)CrossRefGoogle Scholar
  8. 8.
    Bayram, S., Sencar, H., Memon, N.: Improvements on source camera-model identification based on CFA. In: Advances in Digital Forensics II, IFIP International Conference on Digital Forensics, pp. 289–299 (2006)Google Scholar
  9. 9.
    Fan, N., Jin, C., Huang, Y.: Source Camera identification by JPEG compression statistics for image forensics. In: TENCON, pp. 1–4 (2006)Google Scholar
  10. 10.
    Thai, T., Retraint, F., Cogranne, R.: Camera model identification based on dct coefficient statistics. Digital Signal Processing 4, 88–100 (2015)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Van, L., Emmanuel, S., Kankanhalli, M.: Identifying source cell phone using chromatic aberration. In: IEEE International Conference on Multimedia and Expo, pp. 883–886 (2007)Google Scholar
  12. 12.
    Thai, T., Cogranne, R., Retraint, F.: Camera model identification based on the heteroscedastic noise model. IEEE Transactions on Image Processing 23(1), 250–263 (2014)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kharrazi, M., Sencar, H., Memon, N.: Blind source camera identification. In: IEEE International Conference on Image Processing, pp. 709–712 (2004)Google Scholar
  14. 14.
    Avcibaş, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. IEEE Transactions on Image Processing 12(2), 221–229 (2003)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Çeliktutan, O., Sankur, B., Avcibaş, I.: Blind identification of source cell-phone model. IEEE Transactions on Information Forensics and Security 3(3), 553–566 (2008)Google Scholar
  16. 16.
    Lyu, S., Farid, H.: Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security 1(1), 111–119 (2006)CrossRefGoogle Scholar
  17. 17.
    Gloe, T.: Feature-based forensic camera model identification. In: Shi, Y.Q., Katzenbeisser, S. (eds.) Transactions on DHMS VIII. LNCS, vol. 7228, pp. 42–62. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Gloe, T., Böhme, R.: The Dresden image database for benchmarking digital image forensics. Journal of Digital Forensic Practice 3(2–4), 150–159 (2010)CrossRefGoogle Scholar
  19. 19.
    Xu, G., Shi, Y.: Camera model identification using local binary patterns. In: IEEE International Conference on Multimedia and Expo, pp. 392–397 (2012)Google Scholar
  20. 20.
    Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: An investigation of local descriptors for biometric spoofing detection. IEEE Transactions on Information Forensics and Security 10(4), 849–863 (2015)CrossRefGoogle Scholar
  21. 21.
    Xu, G., Gao, S., Shi, Y.Q., Hu, R.M., Su, W.: Camera-model identification using markovian transition probability matrix. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds.) IWDW 2009. LNCS, vol. 5703, pp. 294–307. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  22. 22.
    Shi, Y.Q., Chen, C.-H., Chen, W.: A markov process based approach to effective attacking JPEG steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 249–264. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Transactions on Information Forensics and Security 7, 868–882 (2012)CrossRefGoogle Scholar
  24. 24.
    Kirchner, M., Fridrich, J.: On detection of median filtering in images. In: SPIE, Electronic Imaging, Media Forensics and Security XII, pp. 101–112 (2010)Google Scholar
  25. 25.
    Verdoliva, L., Cozzolino, D., Poggi, G.: A feature-based approach for image tampering detection and localization. In: IEEE Workshop on Information Forensics and Security, pp. 149–154 (2014)Google Scholar
  26. 26.
    Chierchia, G., Parrilli, S., Poggi, G., Sansone, C., Verdoliva, L.: On the influence of denoising in PRNU based forgery detection. In: 2nd ACM workshop on Multimedia in Forensics, Security and Intelligence, pp. 117–122 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francesco Marra
    • 1
  • Giovanni Poggi
    • 1
  • Carlo Sansone
    • 1
  • Luisa Verdoliva
    • 1
  1. 1.DIETIUniversity Federico II of NaplesNaplesItaly

Personalised recommendations