International Conference on Image Analysis and Processing

ICIAP 2015: New Trends in Image Analysis and Processing -- ICIAP 2015 Workshops pp 87-94 | Cite as

Texture Classification Using Rotation Invariant LBP Based on Digital Polygons

  • Juan Pardo-Balado
  • Antonio Fernández
  • Francesco Bianconi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

This paper investigates the use of digital polygons as a replacement for circular interpolated neighbourhoods for extracting texture features through Local Binary Patterns. The use of digital polygons has two main advantages: reduces the computational cost, and avoids the high-frequency loss resulting from pixel interpolation. The solution proposed in this work employs a sub-sampling scheme over Andres’ digital circles. The effectiveness of the method was evaluated in a supervised texture classification experiment over eight different datasets. The results showed that digital polygons outperformed interpolated circular neighbourhoods in most cases.

Keywords

Local Binary Patterns Texture classification Digital circles Digital polygons Rotation invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 235–246. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Bianconi, F., Fernández, A.: Rotation invariant co-occurrence features based on digital circles and discrete Fourier transform. Pattern Recognition Letters 48, 34–41 (2014)CrossRefGoogle Scholar
  3. 3.
    Burger, W., Burge, M.J.: Principles of Digital Image Processing: Core Algorithms. Springer (2009)Google Scholar
  4. 4.
    Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification. Machine Vision and Applications 22(6), 913–926 (2011)CrossRefGoogle Scholar
  5. 5.
    Fernández, A., Álvarez, M.X., Bianconi, F.: Texture description through histograms of equivalent patterns. Journal of Mathematical Imaging and Vision 45(1), 76–102 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    González, E., Bianconi, F., Fernández, A.: General framework for rotation invariant texture classification through co-occurrence of patterns. Journal of Mathematical Imaging and Vision 50, 300–313 (2014)CrossRefGoogle Scholar
  7. 7.
    Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann (2004)Google Scholar
  8. 8.
    Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 3rd edn, pp. 197–216. World Scientific Publishing (2005)Google Scholar
  9. 9.
    McIlroy, M.D.: Best approximate circles on integer grids. ACM Transactions on Graphics 2(4), 237–263 (1983)CrossRefMATHGoogle Scholar
  10. 10.
    Mukherjee, J., Das, P.P., Aswatha Kumar, M., Chatterji, B.N.: On approximating Euclidean metrics by digital distances in 2D and 3D. Pattern Recognition Letters 21(6–7), 573–582 (2000)CrossRefGoogle Scholar
  11. 11.
    Nanni, L., Brahnam, S., Lumini, A.: Survey on LBP based texture descriptors for image classification. Expert Systems with Applications 39(3), 3634–3641 (2012)CrossRefGoogle Scholar
  12. 12.
    Petrou, M., García Sevilla, P.: Image Processing. Dealing with Texture. Wiley Interscience (2006)Google Scholar
  13. 13.
    Prakash, J., Rajesh, K.: A novel approach for coin identification using eigenvalues of covariance matrix, Hough transform and raster scan algorithms. World Academy of Science, Engineering and Technology 2(8), 170–176 (2008)Google Scholar
  14. 14.
    Xie, X., Mirmehdi, M.: A galaxy of texture features. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of texture analysis, pp. 375–406. Imperial College Press (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juan Pardo-Balado
    • 1
  • Antonio Fernández
    • 1
  • Francesco Bianconi
    • 2
  1. 1.Universidade de Vigo, School of Industrial EngineeringVigoSpain
  2. 2.Department of EngineeringUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations