Advertisement

Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization

  • Carleton Coffrin
  • Hassan L. Hijazi
  • Pascal Van Hentenryck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9255)

Abstract

Convexification is a fundamental technique in (mixed-integer) nonlinear optimization and many convex relaxations are parametrized by variable bounds, i.e., the tighter the bounds, the stronger the relaxations. This paper studies how bound tightening can improve convex relaxations for power network optimization. It adapts traditional constraint-programming concepts (e.g., minimal network and bound consistency) to a relaxation framework and shows how bound tightening can dramatically improve power network optimization. In particular, the paper shows that the Quadratic Convex relaxation of power flows, enhanced by bound tightening, almost always outperforms the state-of-the-art Semi-Definite Programming relaxation on the optimal power flow problem.

Keywords

Continuous constraint networks Minimal network Bound consistency Convex relaxation AC power flow QC relaxation AC optimal power flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, T.: Scip: solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009). http://dx.doi.org/10.1007/s12532-008-0001-1 zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems 30(67), 383–392 (2008)CrossRefGoogle Scholar
  3. 3.
    Belotti, P.: Couenne: User manual (2009). https://projects.coin-or.org/Couenne/ (accessed April 10, 2015)
  4. 4.
    Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening (2012). http://www.optimization-online.org/DB_HTML/2012/01/3325.html
  5. 5.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex minlp. Optimization Methods Software 24(4–5), 597–634 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Benhamou, F., McAllester, D., Van Hentenryck, P.: Clp (intervals) revisited.Tech. rep., Brown University, Providence, RI, USA (1994)Google Scholar
  7. 7.
    Bent, R., Coffrin, C., Gumucio, R., Van Hentenryck, P.: Transmission network expansion planning: Bridging the gap between ac heuristics and dc approximations. In: Proceedings of the 18th Power Systems Computation Conference (PSCC 2014), Wroclaw, Poland (2014)Google Scholar
  8. 8.
    Berthold, T., Heinz, S., Vigerske, S.: Extending a cip framework to solvemiqcps. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 427–444. Springer New York (2012)Google Scholar
  9. 9.
    Chen, Y., Luh, P., Guan, C., Zhao, Y., Michel, L., Coolbeth, M., Friedland, P., Rourke, S.: Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Transactions on Power Systems 25(1), 322–330 (2010)CrossRefGoogle Scholar
  10. 10.
    Coffrin, C., Gordon, D., Scott, P.: NESTA, The Nicta Energy System Test Case Archive. CoRR abs/1411.0359 (2014). http://arxiv.org/abs/1411.0359
  11. 11.
    Coffrin, C., Hijazi, H., Van Hentenryck, P.: The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow. CoRR abs/1502.07847 (2015). http://arxiv.org/abs/1502.07847
  12. 12.
    Coffrin, C., Van Hentenryck, P.: Transmission system restoration: Co-optimization of repairs, load pickups, and generation dispatch. International Journal of Electrical Power & Energy Systems (2015) (forthcoming)Google Scholar
  13. 13.
    Farivar, M., Clarke, C., Low, S., Chandy, K.: Inverter var control for distribution systems with renewables. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 457–462, October 2011Google Scholar
  14. 14.
    Fisher, E., O’Neill, R., Ferris, M.: Optimal transmission switching. IEEE Transactions on Power Systems 23(3), 1346–1355 (2008)CrossRefGoogle Scholar
  15. 15.
    Fourer, R., Gay, D.M., Kernighan, B.: AMPL: a mathematical programming language. In: Wallace, S.W. (ed.) Algorithms and Model Formulations in Mathematical Programming, pp. 150–151. Springer-Verlag New York Inc., New York (1989)CrossRefGoogle Scholar
  16. 16.
    Fu, Y., Shahidehpour, M., Li, Z.: Security-constrained unit commitment with ac constraints*. IEEE Transactions on Power Systems 20(3), 1538–1550 (2005)CrossRefGoogle Scholar
  17. 17.
    Hedman, K., Ferris, M., O’Neill, R., Fisher, E., Oren, S.: Co-optimization of generation unit commitment and transmission switching with n-1 reliability. In: 2010 IEEE Power and Energy Society General Meeting, pp. 1–1, July 2010Google Scholar
  18. 18.
    Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of mixed-integer nonlinear programs in power systems (2013). http://www.optimization-online.org/DB_HTML/2013/09/4057.html
  19. 19.
    Hijazi, H., Thiebaux, S.: Optimal ac distribution systems reconfiguration. In: Proceedings of the 18th Power Systems Computation Conference (PSCC 2014), Wroclaw, Poland (2014)Google Scholar
  20. 20.
    Jabr, R.: Radial distribution load flow using conic programming. IEEE Transactions on Power Systems 21(3), 1458–1459 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jabr, R.: Optimization of ac transmission system planning. IEEE Transactions on Power Systems 28(3), 2779–2787 (2013)CrossRefGoogle Scholar
  22. 22.
    Kundur, P.: Power System Stability and Control. McGraw-Hill Professional (1994)Google Scholar
  23. 23.
    Lavaei, J., Low, S.: Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems 27(1), 92–107 (2012)CrossRefGoogle Scholar
  24. 24.
    Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-Feasibility on Tree Networks is NP-Hard. IEEE Transactions on Power Systems (2015) (to appear)Google Scholar
  25. 25.
    Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization, Nonconvex Optimization and Its Applications, vol. 84, pp. 211–262. Springer, US (2006). http://dx.doi.org/10.1007/0-387-30528-9_8
  26. 26.
    Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem (2014). http://www.ee.columbia.edu/ lavaei/SCOPF_2014.pdf (accessed February 22, 2015)
  27. 27.
    McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part i convex underestimating problems. Mathematical Programming 10, 146–175 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Miller, J.: Power system optimization smart grid, demand dispatch, and microgrids, September 2011. http://www.netl.doe.gov/smartgrid/referenceshelf/presentations/SE%20Dist%20Apparatus%20School_Final_082911_rev2.pdf (accessed April 22, 2012)
  29. 29.
    Momoh, J., Adapa, R., El-Hawary, M.: A review of selected optimal power flow literature to 1993. i. nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems 14(1), 96–104 (1999)CrossRefGoogle Scholar
  30. 30.
    Momoh, J., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. ii. newton, linear programming and interior point methods. IEEE Transactions on Power Systems 14(1), 105–111 (1999)CrossRefGoogle Scholar
  31. 31.
    Montanari, U.: Networks of Constraints : Fundamental Properties and Applications to Picture Processing. Information Science 7(2), 95–132 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Ott, A.: Unit commitment in the pjm day-ahead and real-time markets, June 2010. http://www.ferc.gov/eventcalendar/Files/20100601131610-Ott,%20PJM.pdf (accessed April 22, 2012)
  33. 33.
    Purchala, K., Meeus, L., Van Dommelen, D., Belmans, R.: Usefulness of DC power flow for active power flow analysis. In: Power Engineering Society General Meeting, pp. 454–459 (2005)Google Scholar
  34. 34.
    Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8(2), 107–138 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Sahinidis, N.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. LNCS, vol. 2861, pp. 1–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  36. 36.
    Toh, K.C., Todd, M., Ttnc, R.H.: Sdpt3 - a matlab software package for semidefinite programming. Optimization Methods and Software 11, 545–581 (1999)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Van Hentenryck, P., McAllister, D., Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach. SIAM Journal on Numerical Analysis 34(2) (1997)Google Scholar
  38. 38.
    Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global Optimization. The MIT Press, Cambridge (1997)Google Scholar
  39. 39.
    Van Hentenryck, P., Saraswat, V., Deville, Y.: The design, implementation, and evaluation of the constraint language cc(FD). In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 293–316. Springer, Heidelberg (1995)Google Scholar
  40. 40.
    Verma, A.: Power grid security analysis: An optimization approach. Ph.D. thesis, Columbia University (2009)Google Scholar
  41. 41.
    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carleton Coffrin
    • 1
    • 2
  • Hassan L. Hijazi
    • 1
    • 2
  • Pascal Van Hentenryck
    • 1
    • 2
  1. 1.NICTA - Optimisation Research GroupCanberraAustralia
  2. 2.College of Engineering and Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations