Advertisement

Modeling and Solving Project Scheduling with Calendars

  • Stefan Kreter
  • Andreas SchuttEmail author
  • Peter J. Stuckey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9255)

Abstract

Resource-constrained project scheduling with the objective of minimizing project duration (RCPSP) is one of the most studied scheduling problems. In this paper we consider the RCPSP with general temporal constraints and calendar constraints. Calendar constraints make some resources unavailable on certain days in the scheduling period and force activity execution to be delayed while resources are unavailable. They arise in practice from, e.g., unavailabilities of staff during public holidays and weekends. The resulting problems are challenging optimization problems. We develop not only four different constraint programming (CP) models to tackle the problem, but also a specialized propagator for the cumulative resource constraints taking the calendar constraints into account. This propagator includes the ability to explain its inferences so it can be used in a lazy clause generation solver. We compare these models, and different search strategies on a challenging set of benchmarks using a lazy clause generation solver. We close 83 of the open problems of the benchmark set, and show that CP solutions are highly competitive with existing Mip models of the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Mathematical and Computer Modelling 17(7), 57–73 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  3. 3.
    Baptiste, P.: Constraint-Based Scheduling: Two Extensions. Master’s thesis, University of Strathclyde, Glasgow, Scotland, United Kingdom (1994)Google Scholar
  4. 4.
    Beldiceanu, N.: Parallel machine scheduling with calendar rules. In: International Workshop on Project Management and Scheduling (1998)Google Scholar
  5. 5.
    Cheng, J., Fowler, J., Kempf, K., Mason, S.: Multi-mode resource-constrained project scheduling problems with non-preemptive activity splitting. Computers & Operations Research 53, 275–287 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Franck, B.: Prioritätsregelverfahren für die ressourcenbeschränkte Projektplanung mit und ohne Kalender. Shaker, Aachen (1999)Google Scholar
  7. 7.
    Franck, B., Neumann, K., Schwindt, C.: Project scheduling with calendars. OR Spektrum 23, 325–334 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Franck, B., Neumann, K., Schwindt, C.: Truncated branch-and-bound, schedule-construction, and schedule-improvement procedures for resource-constrained project scheduling. OR Spektrum 23, 297–324 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kreter, S., Rieck, J., Zimmermann, J.: Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars. Submitted to European Journal of Operational Research (2014)Google Scholar
  10. 10.
    Lahrichi, A.: Scheduling: The notions of hump, compulsory parts and their use in cumulative problems. Comptes Rendus de l’Académie des Sciences. Paris, Série 1, Matématique 294(2), 209–211 (1982)Google Scholar
  11. 11.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47, 173–180 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of Design Automation Conference - DAC 2001, pp. 530–535. ACM, New York (2001)Google Scholar
  13. 13.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Neumann, K., Schwindt, C., Zimmermann, J.: Project Scheduling with Time Windows and Scarce Resources, 2nd edn. Springer, Berlin (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Schutt, A.: Improving Scheduling by Learning. Ph.D. thesis, The University of Melbourne (2011). http://repository.unimelb.edu.au/10187/11060
  17. 17.
    Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propagation for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving RCPSP/max by lazy clause generation. Journal of Scheduling 16(3), 273–289 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: A satisfiability solving approach. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling, vol. 1, pp. 135–160. Springer International Publishing (2015)Google Scholar
  21. 21.
    Schwindt, C., Trautmann, N.: Batch scheduling in process industries: An application of resource-constrained project scheduling. OR Spektrum 22, 501–524 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Trautmann, N.: Calendars in project scheduling. In: Fleischmann, B., Lasch, R., Derigs, U., Domschke, W., Rieder, U. (eds.) Operations Research Proceedings 2000, pp. 388–392. Springer, Berlin (2001)CrossRefGoogle Scholar
  23. 23.
    Zhan, J.: Calendarization of timeplanning in MPM networks. ZOR - Methods and Models of Operations Research 36, 423–438 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Kreter
    • 1
  • Andreas Schutt
    • 2
    • 3
    Email author
  • Peter J. Stuckey
    • 2
    • 3
  1. 1.Operations Research Group, Institute of Management and EconomicsClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Optimisation Research GroupNational ICT AustraliaMelbourneAustralia
  3. 3.Department of Computing and Information SystemsThe University of MelbourneMelbourneAustralia

Personalised recommendations