Advertisement

East European Conference on Advances in Databases and Information Systems

ADBIS 2015: New Trends in Databases and Information Systems pp 346-357 | Cite as

Querying Multiversion Data Warehouses

  • Waqas Ahmed
  • Esteban Zimányi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 539)

Abstract

Data warehouses (DWs) change in their content and structure due to changes in the feeding sources, business requirements, the modeled reality, and legislation, to name a few. Keeping the history of changes in the content and structure of a DW enables the user to analyze the state of the business world retrospectively or prospectively. Multiversion data warehouses (MVDWs) keep the history of content and structure changes by creating multiple data warehouse versions. Querying such DWs is complex as data is stored in multiple schema versions. In this paper, we discuss various schema changes in a multidimensional model, and elaborate their impact on the queries. Further, we also propose a system to support querying MVDWs.

Keywords

Data Warehouse Schema Change Validity Period User Query Level Store 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, W., Zimányi, E., Wrembel, R.: A logical model for multiversion data warehouses. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 23–34. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Ahmed, W., Zimányi, E., Wrembel, R.: Temporal data warehouses: Logical models and querying. In: Proc. of EDA, pp. 33–47 (2015)Google Scholar
  3. 3.
    Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema evolution process. VLDB Journal 22(1), 73–98 (2013)CrossRefGoogle Scholar
  4. 4.
    Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data warehouses. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, p. 83. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  5. 5.
    Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data warehouses: Enabling cross-version querying via schema augmentation. Data & Knowledge Engineering 59(2), 435–459 (2006)CrossRefGoogle Scholar
  6. 6.
    Golfarelli, M., Rizzi, S.: A survey on temporal data warehousing. International Journal of Data Warehousing and Mining 5(1), 1–17 (2009)CrossRefGoogle Scholar
  7. 7.
    Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), 270–294 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Huo, W., Tsotras, V.J.: Querying transaction–time databases under branched schema evolution. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part I. LNCS, vol. 7446, pp. 265–280. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Kaas, C., Pedersen, T.B., Rasmussen, B.: Schema evolution for stars and snowflakes. In: Proc. of ICEIS, pp. 425–433 (2004)Google Scholar
  10. 10.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. John Wiley & Sons (2013)Google Scholar
  11. 11.
    Malinowski, E., Zimányi, E.: A conceptual model for temporal data warehouses and its transformation to the ER and the object-relational models. Data & Knowledge Engineering 64(1), 101–133 (2008)CrossRefGoogle Scholar
  12. 12.
    Medeiros, C.B., Bellosta, M., Jomier, G.: Multiversion views: Constructing views in a multiversion database. Data & Knowledge Engineering 33(3), 277–306 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Moon, H.J., Curino, C., Ham, M., Zaniolo, C.: PRIMA: archiving and querying historical data with evolving schemas. In: Proc. of SIGMOD, pp. 1019–1022 (2009)Google Scholar
  14. 14.
    Roddick, J.F.: A survey of schema versioning issues for database systems. Information & Software Technology 37(7), 383–393 (1995)CrossRefGoogle Scholar
  15. 15.
    Srivastava, D., Dar, S., Jagadish, H.V., Levy, A.Y.: Answering queries with aggregation using views. In: Proc. of VLDB, pp. 318–329 (1996)Google Scholar
  16. 16.
    Wei, H.-C., Elmasri, R.: Schema versioning and database conversion techniques for bi-temporal databases. Annals of Mathematics and Artificial Intelligence 30(1–4), 23–52 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Wrembel, R.: A survey on managing the evolution of data warehouses. International Journal of Data Warehousing & Mining 5(2), 24–56 (2009)CrossRefGoogle Scholar
  18. 18.
    Wrembel, R.: On handling the evolution of external data sources in a data warehouse architecture. In: Taniar, D., Chen, L. (eds.) Data Mining and Database Technologies: Innovative Approaches. IGI Group (2011)Google Scholar
  19. 19.
    Wrembel, R., Bębel, B.: Metadata management in a multiversion data warehouse. In: Meersman, R. (ed.) OTM 2005. LNCS, vol. 3761, pp. 1347–1364. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer & Decision Engineering (CoDE)Université libre de BruxellesBrusselsBelgium
  2. 2.Institute of Computing SciencePoznan University of TechnologyPoznanPoland

Personalised recommendations