East European Conference on Advances in Databases and Information Systems

ADBIS 2015: New Trends in Databases and Information Systems pp 218-228 | Cite as

Andromeda: A System for Processing Queries and Updates on Big XML Documents

  • Nicole Bidoit
  • Dario Colazzo
  • Carlo SartianiEmail author
  • Alessandro Solimando
  • Federico Ulliana
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 539)


In this paper we present Andromeda, a system for processing queries and updates on large XML documents. The system is based on the idea of statically and dynamically partitioning the input document, so to distribute the computing load among the machines of a Map/Reduce cluster.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI, pp. 137–150. USENIX Association (2004)Google Scholar
  2. 2.
    Choi, H., Lee, K.H., Kim, S.H., Lee, Y.J., Moon, B.: HadoopXML: a suite for parallel processing of massive XML data with multiple twig pattern queries. In: wen Chen, X., Lebanon, G., Wang, H., Zaki, M.J. (eds.) CIKM, pp. 2737–2739. ACM (2012)Google Scholar
  3. 3.
    Boag, S., Chamberlin, D., Fernández, M.F., Florescu, D., Robie, J., Siméon, J.: XQuery 1.0: An XML Query Language (Second Edition). Technical report, World Wide Web Consortium. W3C Recommendation (2010)Google Scholar
  4. 4.
    Robie, J., Chamberlin, D., Dyck, M., Florescu, D., Melton, J., Siméon, J.: XQuery Update Facility 1.0. Technical report, World Wide Web Consortium. W3C Recommendation (2011)Google Scholar
  5. 5.
  6. 6.
    Bidoit, N., Colazzo, D., Malla, N., Sartiani, C.: Partitioning XML documents for iterative queries. In: Desai, B.C., Pokorný, J., Bernardino, J. (eds.) IDEAS, pp. 51–60. ACM (2012)Google Scholar
  7. 7.
  8. 8.
    Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.: XMark: a benchmark for XML data management. In: VLDB, pp. 974–985. Morgan Kaufmann (2002)Google Scholar
  9. 9.
    Goldman, R., Widom, J.: DataGuides: enabling query formulation and optimization in semistructured databases. In: VLDB (1997)Google Scholar
  10. 10.
    Malla, N.: Partitioning XML data, towards distributed and parallel management. PhD thesis, Université Paris Sud (2012)Google Scholar
  11. 11.
    Khatchadourian, S., Consens, M.P., Siméon, J.: Having a ChuQL at XML on the cloud. In: Barceló, P., Tannen, V. (eds.) Proceedings of the 5th Alberto Mendelzon International Workshop on Foundations of Data Management, Santiago, Chile, May 9–12, 2011. CEUR Workshop Proceedings, vol. 749. (2011)Google Scholar
  12. 12.
    Fegaras, L., Li, C., Gupta, U., Philip, J.: XML query optimization in map-reduce. In: WebDB (2011)Google Scholar
  13. 13.
    Camacho-Rodríguez, J., Colazzo, D., Manolescu, I.: PAXQuery: a massively parallel XQuery processor. In: Katsifodimos, A., Tzoumas, K., Babu, S. (eds.) Proceedings of the Third Workshop on Data analytics in the Cloud, DanaC 2014, June 22, 2014, Snowbird, Utah, USA. In conjunction with ACM SIGMOD/PODS Conference, pp. 1–4 ACM (2014)Google Scholar
  14. 14.
    Preston Carman Jr., E., Westmann, T., Borkar, V.R., Carey, M.J., Tsotras, V.J.: Apache VXQuery: A scalable XQuery implementation (2015). CoRR abs/1504.00331Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicole Bidoit
    • 1
  • Dario Colazzo
    • 2
  • Carlo Sartiani
    • 3
    Email author
  • Alessandro Solimando
    • 4
  • Federico Ulliana
    • 5
  1. 1.BD&OAK TeamUniversité Paris Sud - INRIAOrsayFrance
  2. 2.LAMSADEUniversité Paris DauphineParisFrance
  3. 3.DIMIEUniversità Della BasilicataPotenzaItaly
  4. 4.DIBRISUniversità di GenovaGenovaItaly
  5. 5.LIRMMUniversité Montpellier 2MontpellierFrance

Personalised recommendations