East European Conference on Advances in Databases and Information Systems

ADBIS 2015: New Trends in Databases and Information Systems pp 153-161 | Cite as

Bi-objective Optimization for Approximate Query Evaluation

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 539)

Abstract

A problem of effective and efficient approximate query evaluation is addressed as a special case of multi-objective optimization with 2 criteria: the computational resources and the quality of result. The proposed optimization and execution model provides for interactive trade of quality for speed.

Keywords

Multi-objective query optimization Parametric query optimization Approximate query evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, S., Iyer, A.P., Panda, A., Madden, S., Mozafari, B., Stoica, I.: Blink and it’s done: interactive queries on very large data. Proceedings of the VLDB Endowment 5(12), 1902–1905 (2012)CrossRefGoogle Scholar
  2. 2.
    Bizarro, P., Bruno, N., DeWitt, D.J.: Progressive parametric query optimization. IEEE Transactions on Knowledge and Data Engineering 21(4), 582–594 (2009)CrossRefGoogle Scholar
  3. 3.
    Braga, D., Campi, A., Ceri, S., Raffio, A.: Joining the results of heterogeneous search engines. Inf. Syst. 33(7–8), 658–680 (2008)CrossRefGoogle Scholar
  4. 4.
    Fender, P., Moerkotte, G.: Counter strike: generic top-down join enumeration for hypergraphs. Proceedings of the VLDB Endowment 6(14), 1822–1833 (2013)CrossRefGoogle Scholar
  5. 5.
    Ganguly, S., Hasan, W., Krishnamurthy, R.: Query optimization for parallel execution. In: Proceedings of the 1992 ACM SIGMOD International Conference on Management of Data, SIGMOD 1992, pp. 9–18. ACM, New York (1992)Google Scholar
  6. 6.
    Hulgeri, A., Sudarshan, S.: Parametric query optimization for linear and piecewise linear cost functions. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 167–178. VLDB Endowment (2002)Google Scholar
  7. 7.
    Kambhampati, S., Nambiar, U., Nie, Z., Vaddi, S.: Havasu: a multi-objective, adaptive query processing framework for web data integration. In: ASU CSE. Citeseer (2002)Google Scholar
  8. 8.
    Kllapi, H., Sitaridi, E., Tsangaris, M.M., Ioannidis, Y.: Schedule optimization for data processing flows on the cloud. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 289–300. ACM (2011)Google Scholar
  9. 9.
    Kossmann, D., Stocker, K.: Iterative dynamic programming: a new class of query optimization algorithms. ACM Trans. Database Syst. 25(1), 43–82 (2000)CrossRefGoogle Scholar
  10. 10.
    Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data flows for multiple execution engines. In: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano, L., Fuxman, A. (eds.) SIGMOD Conference, pp. 829–840. ACM (2012)Google Scholar
  11. 11.
    Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the join ordering problem. VLDB J. 6(3), 191–208 (1997)CrossRefGoogle Scholar
  12. 12.
    Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guarantees. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB, pp. 648–659. Morgan Kaufmann (2004)Google Scholar
  13. 13.
    Trummer, I., Koch, C.: Approximation schemes for many-objective query optimization. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) SIGMOD Conference, pp. 1299–1310. ACM (2014)Google Scholar
  14. 14.
    Trummer, I., Koch, C.: Multi-objective parametric query optimization. Proceedings of the VLDB Endowment 8(3) (2014)Google Scholar
  15. 15.
    Yarygina, A., Novikov, B.: Optimizing resource allocation for approximate real-time query processing. Computer Science and Information Systems 11(1), 69–88 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.St. Petersburg UniversitySt. PetersburgRussia

Personalised recommendations