East European Conference on Advances in Databases and Information Systems

ADBIS 2015: New Trends in Databases and Information Systems pp 135-144

MLES: Multilayer Exploration Structure for Multimedia Exploration

  • Juraj Moško
  • Jakub Lokoč
  • Tomáš Grošup
  • Přemysl Čech
  • Tomáš Skopal
  • Jan Lánský
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 539)

Abstract

The traditional content-based retrieval approaches usually use flat querying, where whole multimedia database is searched for a result of some similarity query with a user specified query object. However, there are retrieval scenarios (e.g., multimedia exploration), where users may not have a clear search intents in their minds, they just want to inspect a content of the multimedia collection. In such scenarios, flat querying is not suitable for the first phases of browsing, because it retrieves the most similar objects and does not consider a view on part of a multimedia space from different perspectives. Therefore, we defined a new Multilayer Exploration Structure (MLES), that enables exploration of a multimedia collection in different levels of details. Using the MLES, we formally defined popular exploration operations (zoom-in/out, pan) to enable horizontal and vertical browsing in explored space and we discussed several problems related to the area of multimedia exploration.

Keywords

Similarity search Multimedia exploration Content-based retrieval Exploration operation Multimedia browsing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beecks, C., Uysal, M., Driessen, P., Seidl, T.: Content-based exploration of multimedia databases. In: 2013 11th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 59–64, June 2013Google Scholar
  2. 2.
    Beecks, C., Driessen, P., Seidl, T.: Index support for content-based multimedia exploration. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 999–1002. ACM, New York (2010)Google Scholar
  3. 3.
    Budikova, P., Batko, M., Zezula, P.: Evaluation platform for content-based image retrieval systems. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.) TPDL 2011. LNCS, vol. 6966, pp. 130–142. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Chavez, G.E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)CrossRefGoogle Scholar
  5. 5.
    Chen, C., Gagaudakis, G., Rosin, P.: Similarity-based image browsing (2000)Google Scholar
  6. 6.
    Chen, J.Y., Bouman, C., Dalton, J.: Hierarchical browsing and search of large image databases. IEEE Transact. on Image Processing 9(3), 442–455 (2000)CrossRefGoogle Scholar
  7. 7.
    Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB 197, pp. 426–435. Morgan Kaufmann Publishers Inc. (1997)Google Scholar
  8. 8.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  9. 9.
    Grošup, T., Čech, P., Lokoč, J., Skopal, T.: A web portal for effective multi-model exploration. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015, Part II. LNCS, vol. 8936, pp. 315–318. Springer, Heidelberg (2015) Google Scholar
  10. 10.
    Liu, H., Xie, X., Tang, X., Li, Z.W., Ma, W.Y.: Effective browsing of web image search results. In: Proceedings of the 6th ACM SIGMM International Workshop on Multimedia Information Retrieval, MIR 2004, pp. 84–90. ACM (2004)Google Scholar
  11. 11.
    Lokoč, J., Grošup, T., Čech, P., Skopal, T.: Towards efficient multimedia exploration using the metric space approach. In: 2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–4, June 2014Google Scholar
  12. 12.
    Moško, J., Skopal, T., Bartoš, T., Lokoč, J.: Real-time exploration of multimedia collections. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 198–205. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB Journal 11(1), 28–46 (2002)CrossRefGoogle Scholar
  14. 14.
    Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)CrossRefGoogle Scholar
  15. 15.
    Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem. J. of Discrete Algorithms 7(1), 36–48 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Pecenovic, Z., Do, M.N., Vetterli, M., Pu, P.: Integrated browsing and searching of large image collections. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 279–289. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  17. 17.
    Schaefer, G.: A next generation browsing environment for large image repositories. Multimedia Tools and Applications 47, 105–120 (2010). doi:10.1007/s11042-009-0409-2 CrossRefGoogle Scholar
  18. 18.
    Skopal, T., Pokorný, J., Snášel, V.: PM-tree: pivoting metric tree for similarity search in multimedia databases. In: Advances in Databases and Information Systems (2004)Google Scholar
  19. 19.
    Strong, G., Gong, M.: Browsing a large collection of community photos based on similarity on GPU. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 390–399. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juraj Moško
    • 1
  • Jakub Lokoč
    • 1
  • Tomáš Grošup
    • 1
  • Přemysl Čech
    • 1
  • Tomáš Skopal
    • 1
  • Jan Lánský
    • 2
  1. 1.SIRET Research Group, Department of Software Engineering, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  2. 2.Department of Computer Science and MathematicsUniversity of Finance and AdministrationPragueCzech Republic

Personalised recommendations