Advertisement

Service Semantics

  • Steffen StadtmüllerEmail author
  • Jorge Cardoso
  • Martin Junghans
Part of the Service Science: Research and Innovations in the Service Economy book series (SSRI)

Abstract

The chapter looks at how to enrich the description of cloud services with semantic knowledge. This enrichment is conducted using Linked USDL (Unified Service Description Language), a service description language built with semantic web technologies. Linked USDL provides a business and technical envelope to describe services’ general information and their Web API. This improves the search and contracting of services over the web. Using the LastFM cloud service as a starting point, the chapter delves into semantic description and explains the development of a Web API build using the REST paradigm to access cloud services pragmatically.

Keywords

Cloud Service Resource Description Framework Application Program Interface Service Level Agreement Service Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Noor T et al (2013) CSCE: a crawler engine for cloud services discovery on the world wide web. In: IEEE 20th international conference on web services (ICWS). IEEE, Washington, DC, USA, pp 443–450Google Scholar
  2. 2.
    Cardoso J, Pedrinaci C (2015) Evolution and overview of linked USDL. In: 6th International conference exploring services science (IESS 2015). Lecture notes in computer science. Springer, BerlinGoogle Scholar
  3. 3.
    Christensen E et al (2013) Web services description language (WSDL) 1.1. W3C note. W3C, Mar 2001.http://www.w3.org/TR/wsdl. Accessed 10 Sep 2015
  4. 4.
    Kopecky J et al (2007) SAWSDL: semantic annotations for WSDL and XML schema. IEEE Internet Comput 11(6):60–67CrossRefGoogle Scholar
  5. 5.
    Martin D et al (2004) OWL-S: semantic markup for web services. W3C member submissionGoogle Scholar
  6. 6.
    Cardoso J, Sheth A (2003) Semantic e-workflow composition. J Intell Inf Syst 21(3):191–225CrossRefGoogle Scholar
  7. 7.
    Endres-Niggemeyer B (eds) (2013) Semantic mashups. Intelligent reuse of web resources. Springer, Berlin/HeidelbergGoogle Scholar
  8. 8.
    Le Phuoc D et al (2009) Rapid prototyping of semantic mash-ups through semantic web pipes. In: Quemada J et al (eds) Proceedings of the 18th international conference on world wide web, WWW 2009, Madrid, 20–24 April 2009. ACM, New York, NY, USA pp 581–590Google Scholar
  9. 9.
    Lathem J, Gomadam K, Sheth AP (2007) SA-REST and (s)mashups: adding semantics to RESTful services. In: Proceedings of the first IEEE international conference on semantic computing (ICSC 2007), Irvine, CA, 17–19 Sept 2007. IEEE, Washington, DC, USA, pp 469–476Google Scholar
  10. 10.
    Di Lorenzo G et al (2009) Data integration in mashups. SIGMOD Rec 38(1):59–66CrossRefMathSciNetGoogle Scholar
  11. 11.
    Manola F, Miller E (2013) RDF primer. W3C recommendation. W3C, Feb 2004.http://www.w3.org/TR/rdf-primer/. Accessed 10 Sep 2015
  12. 12.
    Brickley D, Guha RV (2013) RDF vocabulary description language 1.0: RDF schema. W3C recommendation. W3C, Feb 2004.http://www.w3.org/TR/rdf-schema/. Accessed 15 Aug 2013
  13. 13.
    Beckett D, Berners-Lee T (2013) Turtle - terse RDF triple language. W3C team submission. W3C, Mar 2011.http://www.w3.org/TeamSubmission/turtle/. Accessed 10 Sep 2015
  14. 14.
    Stolz A, Rodriguez-Castro B, Hepp M (2013) RDF translator: a RESTful multi-format data converter for the semantic web. Technical report TR-2013-1, Universität der Bundeswehr München, July 2013Google Scholar
  15. 15.
    Staab S, Studer R (eds) (2009) Handbook on ontologies, 2nd edn. International handbooks on information systems. Springer, Berlin.Google Scholar
  16. 16.
    Hayes PJ (2013) RDF semantics. W3C recommendation. W3C, Feb 2004.http://www.w3.org/TR/rdf-mt/. Accessed 10 Sep 2015
  17. 17.
    Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell Syst 16(2): 72–79CrossRefGoogle Scholar
  18. 18.
    Lehmann J, Voelker J (2014) An introduction to ontology learning. In: Lehmann J, Voelker J (eds) Perspectives on ontology learning. AKA/IOS Press, Heidelberg, pp 9–16Google Scholar
  19. 19.
    W3C SPARQL Working Group (2013) SPARQL 1.1 overview. W3C recommendation. W3C, Mar 2013.http://www.w3.org/TR/sparql11-overview/. Accessed 10 Sep 2015
  20. 20.
    Bizer C, Heath T, Berners-Lee T (2009) Linked data - the story so far. Int J Semantic Web Inf Syst 4(2):1–22Google Scholar
  21. 21.
    Pautasso C, Wilde E (2009) Why is the web loosely coupled?: a multi-faceted metric for service design. In: Quemada J et al (eds) International conference on world wide web. ACM, New York, NY, USAGoogle Scholar
  22. 22.
    Stadtmüller S et al (2013) Comparing major web service paradigms. In: Workshop on services and applications over linked APIs and data, vol 1056. CEUR-WS, 2013Google Scholar
  23. 23.
    Fielding R (2000) Architectural styles and the design of network-based software architectures. Ph.D. thesis, University of California, IrvineGoogle Scholar
  24. 24.
    Richardson L, Ruby S (2007) RESTful web services. O’Reilly Media. Sebastopol, CA, USAGoogle Scholar
  25. 25.
    Webber J (2010) REST in practice: hypermedia and systems architecture. O’Reilly Media, Farnham, UKCrossRefGoogle Scholar
  26. 26.
    Maleshkova M, Pedrinaci C, Domingue J (2010) Investigating web APIs on the world wide web. In: IEEE 8th European Conference on Web Services (ECOWS), IEEE, Ayia NapaGoogle Scholar
  27. 27.
    Cardoso J et al (2010) Towards a unified service description language for the internet of services: requirements and first developments. In: IEEE international conference on services computing (SCC), FL, pp 602–609Google Scholar
  28. 28.
    Pedrinaci C, Cardoso J, Leidig T (2014) Linked USDL: a vocabulary for web-scale service trading. Lecture notes in computer science, vol 8465. Springer, Berlin, pp 68–82Google Scholar
  29. 29.
    García JM et al (2015) Linked USDL agreement: effectively sharing semantic service level agreements on the web. In: The IEEE international conference on web services (ICWS), New York, 2015Google Scholar
  30. 30.
    Cardoso J et al (2012) Open semantic service networks. In: International symposium on services science (ISSS), Leipzig, 2012Google Scholar
  31. 31.
    Stadtmüller S et al (2013) Data-Fu: a language and an interpreter for interaction with read/write linked data. In: International conference on world wide web. International world wide web conferences steering committee, Geneva, Switzerland, pp 1225–1236Google Scholar
  32. 32.
    Wilde E (2009) REST and RDF granularity. Accessed 10 Sep 2015Google Scholar
  33. 33.
    Krummenacher R, Norton B, Marte A Towards linked open services and processes. In: Future internet symposium. Springer, Berlin, pp 68–77Google Scholar
  34. 34.
    Speiser S, Harth A (2011) Integrating linked data and services with linked data services. In: Proceedings of the 8th extended semantic web conference (ESWC’11) part I, Lecture notes in computer science, vol 6643. Springer, HeraklionGoogle Scholar
  35. 35.
    Verborgh R et al (2011) Efficient runtime service discovery and consumption with hyperlinked RESTdesc. In: International conference on next generation web services practices, Salamanca, 2011Google Scholar
  36. 36.
    Stadtmüller S, Norton B (2013) Scalable discovery of linked APIs. J Metadata Semant Ontol 8(2):95–105CrossRefGoogle Scholar
  37. 37.
    Cardoso J, Winkler M, Voigt K (2009) A service description language for the internet of services. In: International symposium on services science (ISSS), Leipzig, 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Steffen Stadtmüller
    • 1
    Email author
  • Jorge Cardoso
    • 2
    • 3
  • Martin Junghans
    • 1
  1. 1.Karlsruhe Service Research Institute (KSRI)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Department of Informatics EngineeringUniversidade de CoimbraCoimbraPortugal
  3. 3.Huawei European Research Center (ERC)MunichGermany

Personalised recommendations