Advertisement

Shot and Scene Detection via Hierarchical Clustering for Re-using Broadcast Video

  • Lorenzo BaraldiEmail author
  • Costantino Grana
  • Rita Cucchiara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

Video decomposition techniques are fundamental tools for allowing effective video browsing and re-using. In this work, we consider the problem of segmenting broadcast videos into coherent scenes, and propose a scene detection algorithm based on hierarchical clustering, along with a very fast state-of-the-art shot segmentation approach. Experiments are performed to demonstrate the effectiveness of our algorithms, by comparing against recent proposals for automatic shot and scene segmentation.

Keywords

Shot detection Scene detection Clustering Performance measures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostolidis, E., Mezaris, V.: Fast Shot Segmentation Combining Global and Local Visual Descriptors. In: IEEE Int. Conf. Acoustics, Speech and Signal Process, pp. 6583–6587 (2014)Google Scholar
  2. 2.
    Baraldi, L., Grana, C., Cucchiara, R.: Measuring Scene Detection Performance. In: Paredes, R., Cardoso, J.S., Pardo, X.M. (eds.) IbPRIA 2015. LNCS, vol. 9117, pp. 395–403. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  3. 3.
    Baraldi, L., Grana, C., Cucchiara, R.: Scene segmentation using temporal clustering for accessing and re-using broadcast video. In: IEEE International Conference on Multimedia and Expo (IEEE ICME 2015) (2015)Google Scholar
  4. 4.
    Chasanis, V.T., Likas, C., Galatsanos, N.P.: Scene detection in videos using shot clustering and sequence alignment. IEEE Trans. Multimedia 11(1), 89–100 (2009)CrossRefGoogle Scholar
  5. 5.
    Hanjalic, A., Lagendijk, R.L., Biemond, J.: Automated high-level movie segmentation for advanced video-retrieval systems. IEEE Trans. Circuits Syst. Video Technol. 9(4), 580–588 (1999)CrossRefGoogle Scholar
  6. 6.
    Ling, X., Yuanxin, O., Huan, L., Zhang, X.: A method for fast shot boundary detection based on SVM. In: Congress on Image and Signal Processing, CISP 2008, vol. 2, pp. 445–449 (2008)Google Scholar
  7. 7.
    Liu, C., Wang, D., Zhu, J., Zhang, B.: Learning a Contextual Multi-Thread Model for Movie/TV Scene Segmentation. IEEE Trans. Multimedia 15(4), 884–897 (2013)CrossRefGoogle Scholar
  8. 8.
    Rasheed, Z., Shah, M.: Detection and representation of scenes in videos. IEEE Trans. Multimedia 7(6), 1097–1105 (2005)CrossRefGoogle Scholar
  9. 9.
    Sidiropoulos, P., Mezaris, V., Kompatsiaris, I., Meinedo, H., Bugalho, M., Trancoso, I.: Temporal video segmentation to scenes using high-level audiovisual features. IEEE Trans. Circuits Syst. Video Technol. 21(8), 1163–1177 (2011)CrossRefGoogle Scholar
  10. 10.
    Vendrig, J., Worring, M.: Systematic evaluation of logical story unit segmentation. IEEE Trans. Multimedia 4(4), 492–499 (2002)CrossRefGoogle Scholar
  11. 11.
    Yeung, M.M., Yeo, B.L., Wolf, W.H., Liu, B.: Video browsing using clustering and scene transitions on compressed sequences. In: IS&T/SPIE’s Symposium on Electronic Imaging: Science & Technology, pp. 399–413 (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lorenzo Baraldi
    • 1
    Email author
  • Costantino Grana
    • 1
  • Rita Cucchiara
    • 1
  1. 1.Dipartimento di Ingegneria “Enzo Ferrari”Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations