International Conference on Computer Analysis of Images and Patterns

CAIP 2015: Computer Analysis of Images and Patterns pp 630-641 | Cite as

Ground Level Recovery from Terrestrial Laser Scanning Data with the Variably Randomized Iterated Hierarchical Hough Transform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

The planar digital terrain model to be used in the analysis of forest measurements made with terrestrial LIDAR scanning is proposed for regions dominated by plains. The structure of the data suggests that the iterated version of the Hough transform is a suitable method. This makes it possible to reduce the time and memory requirements of the method. Randomization with the fraction of data used varying with distance to the scanner is proposed to address the biasing of the result towards the measurements which are made with higher density in the central part of the stand. Using this method instead of weighted voting reduces the time of analysis. Hierarchical approach leads to further reduction of time. The method can be extended to models formed from more than one plane.

Keywords

Digital terrain model DTM Ground level LIDAR TLS Hough transform HT Randomized Iterated Hierarchical 

References

  1. 1.
    Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. of Photogrammetry and Remote Sensing 59(1–2), 85–101 (2004). doi:10.1016/j.isprsjprs.2004.05.004 CrossRefGoogle Scholar
  2. 2.
    Stereńczak, K., Zasada, M., Brach, M.: The accuracy assessment of DTM generated from LIDAR data for forest area - a case study for scots pine stands in Poland. Baltic Forestry 19(2), 252–262 (2013)Google Scholar
  3. 3.
    Stereńczak, K., Kozak, J.: Evaluation of digital terrain models generated in forest conditions from airborne laser scanning data acquired in two seasons. Scandinavian Journal of Forest Research 26(4), 374–384 (2011). doi:10.1080/02827581.2011.570781 CrossRefGoogle Scholar
  4. 4.
    Costantino, D., Angelini, M.: Production of DTM quality by TLS data. International Journal of Remote Sensing 46, 80–103 (2013). doi:10.5721/EuJRS20134606 Google Scholar
  5. 5.
    Eltner, A., Mulsow, C., Maas, H.G.: Quantitative measurement of soil erosion from TLS and UAV data. International Archives of the Photogrammetry, Remote Sensing and Spatial. Information Sciences 2, 119–124 (2013). doi:10.5194/isprsarchives-XL-1-W2-119-2013 Google Scholar
  6. 6.
    Puttonen, E., Krooks, A., et al.: Ground level determination in forested environment with utilization of a scanner-centered terrestrial laser scanning configuration. IEEE Geoscience and Remote Sensing Letters 12(3), 616–620 (2015). doi:10.1109/LGRS.2014.2353414 CrossRefGoogle Scholar
  7. 7.
    Srinivasan, S., Popescu, S., et al.: Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sensing 7(2), 1877–1896 (2015). doi:10.3390/rs70201877 CrossRefGoogle Scholar
  8. 8.
    Dassot, M., Colin, A., et al.: Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment. Computers and Electronics in Agriculture 89, 86–93 (2012). doi:10.1016/j.compag.2012.08.005 CrossRefGoogle Scholar
  9. 9.
    Chmielewski, L.J., Bator, M., Zasada, M., Stereńczak, K., Strzeliński, P.: Fuzzy hough transform-based methods for extraction and measurements of single trees in large-volume 3D terrestrial LIDAR data. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 265–274. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Chmielewski, L.J., Bator, M.: Hough transform for opaque circles measured from outside and fuzzy voting for and against. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 313–320. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Chmielewski, L.J., Bator, M., Olejniczak, M.: Advantages of using object-specific knowledge at an early processing stage in the detection of trees in LIDAR data. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 145–154. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Hough, P.: Machine analysis of bubble chamber pictures. In: Proc. Int. Conf. on High Energy Accelerators and Instrumentation, CERN (1959)Google Scholar
  13. 13.
    Habib, A., Schenk, T.: New approach for matching surfaces from laser scanners and optical sensors. In: Csatho, B.M., (ed.) Proc. Joint Workshop of ISPRS III/5 and III/2 on Mapping Surface Structure and Topography by Air-borne and Space-borne Lasers, La Jolla, San Diego, CA, Nov 9–11, 1999Google Scholar
  14. 14.
    Xu, L., Oja, E., Kultanen, P.: A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)CrossRefMATHGoogle Scholar
  15. 15.
    Kälviäinen, H., Hirvonen, P., et al.: Probabilistic and non-probabilistic Hough transforms: overview and comparisons. Image and Vision Computing 13(4), 239–252 (1995). doi:10.1016/0262-8856(95)99713-B CrossRefGoogle Scholar
  16. 16.
    Tarsha-Kurdi, F., Grussenmeyer, P.: Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from Lidar data. In: Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, vol. XXXVI-3/W52, Espoo, Finland, pp. 407–412, September 2007Google Scholar
  17. 17.
    Borrmann, D., Elseberg, J., et al.: The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. 3D Research 2(2) (2011). doi:10.1007/3DRes.02(2011)3
  18. 18.
    Bernal-Marin, M., Bayro-Corrochano, E.: Integration of Hough Transform of lines and planes in the framework of conformal geometric algebra for 2D and 3D robot vision. Pattern Recognition Letters 32(16), 2213–2223 (2011). doi:10.1016/j.patrec.2011.05.014 CrossRefGoogle Scholar
  19. 19.
    Grant, W., Voorhies, R., Itti, L.: Finding planes in LiDAR point clouds for real-time registration. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2013, pp. 4347–4354, November 2013. doi:10.1109/IROS.2013.6696980
  20. 20.
    Hulik, R., et al.: Continuous plane detection in point-cloud data based on 3D Hough Transform. Journal of Visual Communication and Image Representation 25(1), 86–97 (2014). doi:10.1016/j.jvcir.2013.04.001 CrossRefGoogle Scholar
  21. 21.
    Limberger, F.A., Oliveira, M.M.: Real-time detection of planar regions in unorganized point clouds. Pattern Recognition 48(6), 2043–2053 (2015). doi:10.1016/j.patcog.2014.12.020 CrossRefGoogle Scholar
  22. 22.
    Chmielewski, L.: Choice of the Hough transform for image registration. Proc. SPIE. 5505, 122–134 (2004). doi:10.1117/12.577912 CrossRefGoogle Scholar
  23. 23.
    Zasada, M., Stereńczak, K., et al.: Horizon visibility and accuracy of stocking determination on circular sample plots using automated remote measurement techniques. Forest Ecology and Management 302, 171–177 (2013). doi:10.1016/j.foreco.2013.03.041 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Applied Informatics and Mathematics (WZIM)Warsaw University of Life Sciences (SGGW)WarsawPoland

Personalised recommendations