International Conference on Computer Analysis of Images and Patterns

CAIP 2015: Computer Analysis of Images and Patterns pp 411-422 | Cite as

Bundle Adjustment with Implicit Structure Modeling Using a Direct Linear Transform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

Bundle adjustment (BA) is considered to be the “golden standard” optimisation technique for multiple-view reconstruction over decades of research. The technique simultaneously tunes camera parameters and scene structure to fit a nonlinear function, in a way that the discrepancy between the observed scene points and their reprojections are minimised in a least-squares manner. Computational feasibility and numerical conditioning are two major concerns of todays BA implementations, and choosing a proper parametrization of structure in 3D space could dramatically improve numerical stability, convergence speed, and cost of evaluating Jacobian matrices. In this paper we study several alternative representations of 3D structure and propose an implicit modeling approach based on a Direct Linear Transform (DLT) estimation. The performances of a variety of parametrization techniques are evaluated using simulated visual odometry scenarios. Experimental results show that the computational cost and convergence speed is further improved to achieve similar accuracy without explicit adjustment over the structure parameters.

Keywords

Bundle adjustment Multiple view reconstruction Nonlinear optimisation Direct linear transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  2. 2.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Engels, C., Stewenius, H., Nister, D.: Bundle adjustment rules. In: Proc. Photogrammetric Computer Vision (2006)Google Scholar
  4. 4.
    Brown, D.C.: The bundle adjustment - progress and prospects. Int. Archives Photogrammetry 21(3), 3:3–3:35 (1976)Google Scholar
  5. 5.
    Granshaw, S.I.: Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record 10(56), 181–207 (1980)CrossRefGoogle Scholar
  6. 6.
    Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Computer Vision Image Understanding 100(3), 416–441 (2005)CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Boutin, M., Aliaga, D.G.: Robust bundle adjustment for structure from motion. In: Proc. IEEE Image Processing 2006, pp. 2185–2188 (2006)Google Scholar
  8. 8.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Computer Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  9. 9.
    Zhang, Z., Shan, Y.: Incremental motion estimation through local bundle adjustment. Technical Report MSR-TR-01-54, Microsoft (2001)Google Scholar
  10. 10.
    Konolige, K., Agrawal, M.: FrameSLAM: From bundle adjustment to real-time visual mapping. IEEE Trans. Robotics 24(5), 1066–1077 (2008)CrossRefGoogle Scholar
  11. 11.
    Civera, J., Davison, J., Montiel, J.M.: Inverse depth parametrization for monocular SLAM. IEEE Trans. Robotics 24(5), 932–945 (2008)CrossRefGoogle Scholar
  12. 12.
    Sibley, G., Mei, C., Reid, I., Newman, P.: Adaptive relative bundle adjustment. In: Proc. Robotics Science Systems Conf. (2009)Google Scholar
  13. 13.
    Schneider, J., Labe, T., Forstner, W.: Incremental real-time bundle adjustment for multi-camera systems with points at infinity. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL–1/W2, 355–360 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhao, L., Huang, S., Sun, Y., Yan, L.: ParallaxBA: bundle adjustment using parallax angle feature parametrization. In: Proc. Robotics Automation (ICRA) 2011, pp. 3117–3124 (2011)Google Scholar
  15. 15.
    Moore, Z., Wright, D., Schinstock, D.E., Lewis, C.: Comparison of bundle adjustment formulations. In: Proc. ASPRS Annual Conf., Baltimore, Maryland (2009)Google Scholar
  16. 16.
    Lourakis, M.I.A., Argyros, A.A.: SBA: A software package for generic sparse bundle adjustment. ACM Trans. Mathematical Software 36(1), 2:1–2:30 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Konolige, K.: Sparse bundle adjustment. In: Proc. British Machine Vision Conf. (BMVC), pp. 1–11 (2010)Google Scholar
  18. 18.
    Wu, C., Agarwal, S., Curless, B., Seitz, S.M.: Multicore bundle adjustment. In: Proc. Computer Vision Pattern Recognition (CVPR) 2011, pp. 3057–3064 (2011)Google Scholar
  19. 19.
    Albl, C., Pajdla, T.: Global camera parameterization for bundle adjustment. Technical Report CTU-CMP-2013-17, Czech Technical University Prague (2013)Google Scholar
  20. 20.
    Bartoli, A., Sturm, P.: Three new algorithms for projective bundle adjustment with minumum parameters. Research Report RR-4236, INRIA (2001)Google Scholar
  21. 21.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. The Quarterly Applied Math. 2, 164–168 (1944)MATHMathSciNetGoogle Scholar
  22. 22.
    Byröd, M., Åström, K.: Conjugate gradient bundle adjustment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 114–127. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  23. 23.
    Lourakis, M.I.A., Argyros, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implenting bundle adjustment? In: Proc. ICCV, vol. 2, pp. 1526–1531 (2005)Google Scholar
  24. 24.
    Indelman, V.: Bundle adjustment without iterative structure estimation and its application to navigation. In: Proc. IEEE/ION Position Location Navigation Symp. (PLANS), pp. 748–756 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hsiang-Jen Chien
    • 1
  • Haokun Geng
    • 2
  • Reinhard Klette
    • 1
  1. 1.School of EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations