International Conference on Computer Analysis of Images and Patterns

CAIP 2015: Computer Analysis of Images and Patterns pp 374-386 | Cite as

Feature Evaluation with High-Resolution Images

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9256)

Abstract

The extraction of scale invariant image features is a fundamental task for many computer vision applications. Features are localized in the scale space of the image. A descriptor is build for each feature which is used to determine the correspondence to a second feature, usually extracted from a second image. For the evaluation of detectors and descriptors, benchmark image sets are used. The benchmarks consist of image sequences and homographies which determine the ground truth for the mapping between the images. The repeatability criterion evaluates the detection accuracy of the detectors while precision and recall measure the quality of the descriptors.

Current data sets provide images with resolutions of less than one megapixel. A recent data set provides challenging images and highly accurate homographies. It allows for the evaluation at different image resolutions with the same scene content. Thus, the scale invariant properties of the extracted features can be examined. This paper presents a comprehensive evaluation of state of the art detectors and descriptors on this data set. The results show significant differences compared to the standard benchmark. Furthermore, it is shown that some detectors perform differently on different resolutions. It follows that high resolution images should be considered for future feature evaluations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)Google Scholar
  2. 2.
    Alcantarilla, P., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)Google Scholar
  3. 3.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    BloodAxe: OpenCV Features Comparison (2014). https://github.com/BloodAxe/OpenCV-Features-Comparison (Online; accessed February 20, 2015)
  5. 5.
    Cordes, K., Rosenhahn, B., Ostermann, J.: Increasing the accuracy of feature evaluation benchmarks using differential evolution. In: IEEE Symposium Series on Computational Intelligence (SSCI) - IEEE Symposium on Differential Evolution (SDE) (2011)Google Scholar
  6. 6.
    Cordes, K., Rosenhahn, B., Ostermann, J.: High-Resolution feature evaluation benchmark. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 327–334. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Fan, B., Wu, F., Hu, Z.: Aggregating gradient distributions into intensity orders: A novel local image descriptor. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2377–2384 (2011)Google Scholar
  8. 8.
    Figat, J., Kornuta, T., Kasprzak, W.: Performance evaluation of binary descriptors of local features. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 187–194. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Hess, R.: An open-source siftlibrary. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1493–1496. ACM, New York (2010)Google Scholar
  11. 11.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555 (2011)Google Scholar
  12. 12.
    Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149(pt. B), 736–751 (2015)Google Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision (IJCV) 65(1–2), 43–72 (2005)CrossRefGoogle Scholar
  15. 15.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  16. 16.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)Google Scholar
  17. 17.
    Salti, S., Lanza, A., Di Stefano, L.: Keypoints from symmetries by wave propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2898–2905 (2013)Google Scholar
  18. 18.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision (IJCV) 80, 189–210 (2008)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: IEEE International Conference on Computer Vision (ICCV), pp. 603–610 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Leibniz Universität HannoverHanoverGermany

Personalised recommendations