On First-Order Model-Based Reasoning

  • Maria Paola BonacinaEmail author
  • Ulrich Furbach
  • Viorica Sofronie-Stokkermans
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9200)


Reasoning semantically in first-order logic is notoriously a challenge. This paper surveys a selection of semantically-guided or model-based methods that aim at meeting aspects of this challenge. For first-order logic we touch upon resolution-based methods, tableaux-based methods, DPLL-inspired methods, and we give a preview of a new method called SGGS, for Semantically-Guided Goal-Sensitive reasoning. For first-order theories we highlight hierarchical and locality-based methods, concluding with the recent Model-Constructing satisfiability calculus.


Satisfiability Modulo Theory Partial Algebra Ground Instance Semantic Resolution Conflict Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The first author thanks David Plaisted, for starting the research on SGGS and inviting her to join in August 2008; and Leonardo de Moura, for the discussions on MCsat at Microsoft Research in Redmond in June 2013. The third author’s work was partially supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS,


  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. 2.
    Aravindan, C., Baumgartner, P.: Theorem proving techniques for view deletion in databases. J. Symbolic Comput. 29(2), 119–148 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arthan, R., Oliva, P.: (Dual) Hoops have unique halving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics: Essays in Memory of William W. McCune. LNCS (LNAI), vol. 7788, pp. 165–180. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. J. ACM 45(6), 1007–1049 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, chap. 26, pp. 825–886. IOS Press, Amsterdam (2009)Google Scholar
  8. 8.
    Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Semantically guided theorem proving for diagnosis applications. In: Proceedings of IJCAI-16, vol. 1, pp. 460–465 (1997)Google Scholar
  9. 9.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Int. J. Artif. Intell. Tools 15(1), 21–52 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J., Moniz Pereira, L., Orłowska, E. (eds.) JELIA 1996. LNCS (LNAI), vol. 1126, pp. 1–17. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  11. 11.
    Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality and an application to finite model computation. J. Logic Comput. 20(1), 77–109 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution calculus with equality - revised and implemented. J. Symbolic Comput. 47(9), 1011–1045 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif. Intell. 172(4–5), 591–632 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663, pp. 17–34. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  15. 15.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE-24. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Bender, M., Pelzer, B., Schon, C.: System description: E-KRHyper 1.4 – Extensions for unique names and description logic. In: Bonacina, M.P. (ed.) CADE-24. LNCS (LNAI), vol. 7898, pp. 126–134. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Bibel, W., Schmitt, P.H. (eds.): Automated Deduction - A Basis for Applications (in 2 volumes). Kluwer Academic Publishers, Dordrecht (1998) Google Scholar
  18. 18.
    Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today - Recent Trends and Developments. LNCS (LNAI), vol. 1600, pp. 43–84. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  19. 19.
    Bonacina, M.P.: On theorem proving for program checking - Historical perspective and recent developments. In: Fernández, M. (eds.): Proceedings of PPDP-12, pp. 1–11. ACM Press (2010)Google Scholar
  20. 20.
    Bonacina, M.P., Echenim, M.: Theory decision by decomposition. J. Symbolic Comput. 45(2), 229–260 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as semidecision procedures. Theoret. Comput. Sci. 146, 199–242 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Bonacina, M.P., Hsiang, J.: On semantic resolution with lemmaizing and contraction and a formal treatment of caching. New Gener. Comput. 16(2), 163–200 (1998)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bonacina, M.P., Johansson, M.: Interpolation of ground proofs in automated deduction: a survey. J. Autom. Reasoning 54(4), 353–390 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving. J. Autom. Reasoning 54(1), 69–97 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. J. Autom. Reasoning 47(2), 161–189 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bonacina, M.P., Plaisted, D.A.: Constraint manipulation in SGGS. In: Kutsia, T., Ringeissen, C. (eds.) Proceedings of UNIF-28, RISC Technical Reports, pp. 47–54. Johannes Kepler Universität, Linz (2014)Google Scholar
  27. 27.
    Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz, S., de Moura, L., Konev, B. (eds.) Proceedings of PAAR-4, EasyChair Proceedings in Computing (EPiC), pp. 25–38 (2015)Google Scholar
  28. 28.
    Bonacina, M.P., Plaisted, D.A.: Semantically guided goal-sensitive reasoning: inference system and completeness (2015, in preparation)Google Scholar
  29. 29.
    Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model representation. J. Autom. Reasoning 55(1), 1–29 (2015). doi: 10.1007/s10817-015-9334-4 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Boy de la Tour, T., Echenim, M.: Permutative rewriting and unification. Inf. Comput. 205(4), 624–650 (2007)Google Scholar
  31. 31.
    Chang, C.-L., Lee, R.C.-T.: Symbolic logic and mechanical theorem proving. Academic Press, New York (1973)zbMATHGoogle Scholar
  32. 32.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)CrossRefGoogle Scholar
  35. 35.
    de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  36. 36.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)Google Scholar
  37. 37.
    Escobar, S., Meseguer, J., Sasse, R.: Variant narrowing and equational unification. Electron. Notes Theoret. Comput. Sci. 238, 103–119 (2009)CrossRefzbMATHGoogle Scholar
  38. 38.
    Fitelson, B.: Gibbard’s collapse theorem for the indicative conditional: an axiomatic approach. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics: Essays in Memory of William W. McCune. LNCS (LNAI), vol. 7788, pp. 181–188. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  39. 39.
    Furbach, U., Schon, C.: Semantically guided evolution of \({\cal S}{\cal H}{\cal I}\) ABoxes. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol. 8123, pp. 17–34. Springer, Heidelbeg (2013)CrossRefGoogle Scholar
  40. 40.
    Gallier, J.H., Snyder, W.: Designing unification procedures using transformations: a survey. EATCS Bull. 40, 273–326 (1990)zbMATHGoogle Scholar
  41. 41.
    Ganzinger, H., Sofronie-Stokkermans, V., Waldmann, U.: Modular proof systems for partial functions with Evans equality. Inf. Comput. 240(10), 1453–1492 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ganzinger, H., Waldmann, U.: Theorem proving in cancellative abelian monoids. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE-13. LNCS, vol. 1104, pp. 388–402. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  43. 43.
    Goguen, J., Meseguer, J.: Order-sorted unification. J. Symbolic Comput. 8(4), 383–413 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci. 105(2), 217–273 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool for partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  46. 46.
    Hendrix, J., Meseguer, J.: Order-sorted equational unification revisited. Electron. Notes Theoret. Comput. Sci. 290(3), 37–50 (2012)CrossRefzbMATHGoogle Scholar
  47. 47.
    Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  48. 48.
    Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies: the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Hsiang, J., Rusinowitch, M., Sakai, K.: Complete inference rules for the cancellation laws. In: Proceedings of IJCAI-10, pp. 990–992 (1987)Google Scholar
  50. 50.
    Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verification. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 265–281. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  51. 51.
    Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 30–45. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  52. 52.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: a new search algorithm for satisfiability. In: Proceedings of ICCAD 1996, pp. 220–227 (1997)Google Scholar
  53. 53.
    Jouannaud, J.-P., Kirchner, C.: Solving equations in abstract algebras: a rule-based survey of unification. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic - Essays in Honor of Alan Robinson, pp. 257–321. MIT Press, Cambridge (1991)Google Scholar
  54. 54.
    Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15(4), 1155–1194 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the model-constructing satisfiability calculus. In: Jobstman, B., Ray, S. (eds.) Proceedings of FMCAD-13. ACM and IEEE (2013)Google Scholar
  56. 56.
    Kapur, D.: An automated tool for analyzing completeness of equational specifications. In: Proceedings of ISSTA-94, pp. 28–43. ACM (1994)Google Scholar
  57. 57.
    Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-completeness, ground-reducibility and their complexity. Acta Informatica 28(4), 311–350 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Lee, S.-J., Plaisted, D.A.: Eliminating duplication with the hyperlinking strategy. J. Autom. Reasoning 9, 25–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Lifschitz, V., Morgenstern, L., Plaisted, D.A.: Knowledge representation and classical logic. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 1, pp. 3–88. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  60. 60.
    Malik, S., Zhang, L.: Boolean satisfiability: from theoretical hardness to practical success. Commun. ACM 52(8), 76–82 (2009)CrossRefGoogle Scholar
  61. 61.
    McCune, W.W.: OTTER 3.3 reference manual. Technical Report ANL/MCS-TM-263, MCS Division, Argonne National Laboratory, Argonne (2003)Google Scholar
  62. 62.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Blaauw, D., Lavagno, L. (eds.) Proceedings of DAC-39, pp. 530–535 (2001)Google Scholar
  63. 63.
    Nelson, G.: Combining satisfiability procedures by equality sharing. In: Bledsoe, W.W., Loveland, D.W. (eds.) Automatic Theorem Proving: After 25 Years, pp. 201–211. American Mathematical Society, Providence (1983)Google Scholar
  64. 64.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. 1(2), 245–257 (1979)CrossRefzbMATHGoogle Scholar
  65. 65.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. J. ACM 28(2), 233–264 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Plaisted, D.A.: Mechanical theorem proving. In: Banerji, R.B. (ed.) Formal Techniques in Artificial Intelligence, pp. 269–320. Elsevier, Amsterdam (1990)Google Scholar
  68. 68.
    Plaisted, D.A.: Equational reasoning and term rewriting systems. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming. Vol. I: Logical Foundations, pp. 273–364. Oxford University Press, Oxford (1993)Google Scholar
  69. 69.
    Plaisted, D.A.: Automated theorem proving. Wiley Interdisciplinary Reviews: Cognitive Science 5(2), 115–128 (2014)MathSciNetGoogle Scholar
  70. 70.
    Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Friedrich Vieweg & Sohns, Braunschweig (1997)CrossRefzbMATHGoogle Scholar
  71. 71.
    Plaisted, D.A., Zhu, Y.: Ordered semantic hyper linking. J. Autom. Reasoning 25, 167–217 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Plotkin, G.: Building in equational theories. Mach. Intell. 7, 73–90 (1972)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Robinson, G.A., Wos, L.: Paramodulation and theorem proving in first order theories with equality. Mach. Intell. 4, 135–150 (1969)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Robinson, J.A.: A machine oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier and MIT Press, Amsterdam (2001)zbMATHGoogle Scholar
  77. 77.
    Rusinowitch, M.: Theorem-proving with resolution and superposition. J. Symbolic Comput. 11(1 & 2), 21–50 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly efficient OWL reasoner. In: Ruttenberg, A., Sattler, U., Dolbear, C. (eds.) Proceedings of OWLED-5, vol. 432 of CEUR (2008)Google Scholar
  79. 79.
    Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution. J. ACM 14(4), 687–697 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Slaney, J., Lusk, E., McCune, W.: SCOTT: semantically constrained Otter system description. In: Bundy, A. (ed.) CADE-12. LNCS (LNAI), vol. 814, pp. 764–768. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  81. 81.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE-20. LNCS (LNAI), vol. 3632, pp. 219–234. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  82. 82.
    Sofronie-Stokkermans, V.: Hierarchical and modular reasoning in complex theories: the case of local theory extensions. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 47–71. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  83. 83.
    Sofronie-Stokkermans, V.: Interpolation in local theory extensions. Logical Methods in Computer Science, 4(4), 1–31, Paper 1 (2008)Google Scholar
  84. 84.
    Stuber, J.: Superposition theorem proving for abelian groups represented as integer modules. Theoret. Comput. Sci. 208(1–2), 149–177 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Waldmann, U.: Superposition for divisible torsion-free abelian groups. In: Kirchner, C., Kirchner, H. (eds.) CADE-15. LNCS (LNAI), vol. 1421, pp. 144–159. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  86. 86.
    Wos, L., Carson, D., Robinson, G.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12, 536–541 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Zhang, H., Zhang, J.: MACE4 and SEM: a comparison of finite model generators. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics: Essays in Memory of William W. McCune. LNCS (LNAI), vol. 7788, pp. 101–130. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  88. 88.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Voronkov, A. (ed.) CADE-18. LNCS (LNAI), vol. 2392, pp. 295–313. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Maria Paola Bonacina
    • 1
    Email author
  • Ulrich Furbach
    • 2
  • Viorica Sofronie-Stokkermans
    • 2
  1. 1.Dipartimento di InformaticaUniversità Degli Studi di VeronaVeronaItaly
  2. 2.Fachbereich InformatikUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations