Combining Runtime Checking and Slicing to Improve Maude Error Diagnosis

  • María Alpuente
  • Demis Ballis
  • Francisco Frechina
  • Julia SapiñaEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9200)


This paper introduces the idea of using assertion checking for enhancing the dynamic slicing of Maude computation traces. Since trace slicing can greatly simplify the size and complexity of the analyzed traces, our methodology can be useful for improving the diagnosis of erroneous Maude programs. The proposed methodology is based on (i) a logical notation for specifying two types of user-defined assertions that are imposed on execution runs: functional assertions and system assertions; (ii) a runtime checking technique that dynamically tests the assertions and is provably safe in the sense that all errors flagged are definite violations of the specifications; and (iii) a mechanism based on equational least general generalization that automatically derives accurate criteria for slicing from falsified assertions.


Canonical Form Equational Theory Java Modeling Language System Assertion Assertion Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for rewriting logic theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward trace slicing for conditional rewrite theories. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 62–76. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Julienne: a trace slicer for conditional rewrite theories. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 28–32. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using conditional trace slicing for improving Maude programs. Sci. Comput. Program. 80, Part B:385–415 (2014)CrossRefGoogle Scholar
  5. 5.
    Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Slicing-based trace analysis of rewriting logic specifications with \(I\) Julienne. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 121–124. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Inspecting rewriting logic computations (in a Parametric and Stepwise Way). In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 229–255. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Debugging Maude programs via runtime assertion checking and trace slicing. Technical report, Department of Computer Systems and Computation, Universitat Politècnica de València (2015).
  8. 8.
    Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Exploring conditional rewriting logic computations. J. Symbolic Comput. 69, 3–39 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equational generalization algorithm. Inf. Comput. 235, 98–136 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Baader, F., Snyder, W.: Unification Theory. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 447–533. Elsevier Science (2001)Google Scholar
  11. 11.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion checking in software development. ACM SIGSOFT Softw. Eng. Notes 31(3), 25–37 (2006)CrossRefGoogle Scholar
  13. 13.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  14. 14.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.6). Technical report, SRI International Computer Science Laboratory (2011).
  15. 15.
    Durán, F., Meseguer, J.: A Maude coherence checker tool for conditional order-sorted rewrite theories. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 86–103. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Durán, F., Roldán, M., Vallecillo, A.: Invariant-driven strategies for Maude. Electron. Notes Theor. Comput. Sci. 124(2), 17–28 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Goguen, J.A., Meseguer, J.: Equality, types, modules, and (why not?) generics for logic programming. J. Logic Program. 1(2), 179–210 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goguen, J.A., Meseguer, J.: Unifying functional, object-oriented and relational programming with logical semantics. In: Agha, G., Wegner, P., Yonezawa, A. (eds.), Research Directions in Object-Oriented Programming, pp. 417–478. The MIT Press (1987)Google Scholar
  19. 19.
    Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.), Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford University Press (1992)Google Scholar
  20. 20.
    Korel, B., Laski, J.: Dynamic program slicing. Inf. Process. Lett. 29(3), 155–163 (1988)CrossRefzbMATHGoogle Scholar
  21. 21.
    Lassez, J.L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan Kaufmann, Los Altos, California (1988)CrossRefGoogle Scholar
  22. 22.
    Leavens, G.T., Cheon, Y.: Design by Contract with JML (2005). leavens/JML/jmldbc.pdf
  23. 23.
    Martí-Oliet, N., Palomino, M., Verdejo, A.: Rewriting logic bibliography by topic: 1990–2011. J. Logic Algebraic Program. 81(7–8), 782–815 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992) CrossRefGoogle Scholar
  26. 26.
    Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 247–262. Springer, Heidelberg (2014) Google Scholar
  27. 27.
    Roşu, G.: From Rewriting Logic, to Programming Language Semantics, to Program Verification. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C., (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 598–616. Springer, Heidelberg (2015)Google Scholar
  28. 28.
    Roldán, M., Durán, F., Vallecillo, A.: Invariant-driven specifications in Maude. Sci. Comput. Program. 74(10), 812–835 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    TeReSe. Term Rewriting Systems. Cambridge University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • María Alpuente
    • 1
  • Demis Ballis
    • 2
  • Francisco Frechina
    • 1
  • Julia Sapiña
    • 1
    Email author
  1. 1.DSIC-ELPUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.DIMIUniversity of UdineUdineItaly

Personalised recommendations