Modularity of Ontologies in an Arbitrary Institution

  • Yazmin Angelica Ibañez
  • Till Mossakowski
  • Donald Sannella
  • Andrzej Tarlecki
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9200)

Abstract

The notion of module extraction has been studied extensively in the ontology community. The idea is to extract, from a large ontology, those axioms that are relevant to certain concepts of interest (formalised as a subsignature). The technical concept used for the definition of module extraction is that of inseparability, which is related to indistinguishability known from observational specifications.

Module extraction has been studied mainly for description logics and the Web Ontology Language \(\mathsf {OWL}\). In this work, we generalise previous definitions and results to an arbitrary inclusive institution. We reveal a small inaccuracy in the formal definition of inseparability, and show that some results hold in an arbitrary inclusive institution, while others require the institution to be weakly union-exact.

This work provides the basis for the treatment of module extraction within the institution-independent semantics of the distributed ontology, modeling and specification language (DOL), which is currently under submission to the Object Management Group (OMG).

Notes

Acknowledgement

We thank Thomas Schneider for discussions and feedback.

References

  1. 1.
    Basin, D.A., Clavel, M., Meseguer, J.: Reflective metalogical frameworks. ACM Trans. Comput. Log. 5(3), 528–576 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a multi-modeling language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 71–87. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Cerioli, M., Meseguer, J.: May I borrow your logic? (transporting logical structures along maps). Theor. Comput. Sci. 173, 311–347 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Clavel, M., Meseguer, J.: Reflection in conditional rewriting logic. Theor. Comput. Sci. 285(2), 245–288 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Diaconescu, R., Goguen, J.A., Stefaneas, P.: Logical support for modularisation. In: 2nd Workshop on Logical Environments, pp. 83–130. CUP, New York (1993)Google Scholar
  6. 6.
    Paul, D., Valentina, T., Luigi, I.: Ontology module extraction for ontology reuse: An ontology engineering perspective. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM 2007, pp. 61–70, New York, NY, USA. ACM (2007)Google Scholar
  7. 7.
    Durán, F., Meseguer, J.: Structured theories and institutions. Theor. Comput. Sci. 309(1–3), 357–380 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39, 95–146 (1992). (Predecessor. LNCS 164, (221–256) (1984))MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Goguen, J., Roşu, G.: Composing hidden information modules over inclusive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison and module extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–1141 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lucas, S., Meseguer, J.: Localized operational termination in general logics. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS, vol. 8950, pp. 91–114. Springer, Heidelberg (2015) Google Scholar
  12. 12.
    Martí-Oliet, N., Meseguer, J., Palomino, M.: Theoroidal maps as algebraic simulations. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 126–143. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Meseguer, J.: General logics. In: Logic Colloquium 87, pp. 275–329. North Holland (1989)Google Scholar
  14. 14.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  15. 15.
    Meseguer, J., Martí-Oliet, N.: From abstract data types to logical frameworks. In: Astesiano, E., Reggio, G., Tarlecki, A. (eds.) Recent Trends in Data Type Specification. LNCS, vol. 906, pp. 48–80. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  16. 16.
    Mossakowski, T., Codescu, M., Neuhaus, F., Kutz, O.: The distributed ontology, modeling, and specification language - DOL. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic, volume II of Studies in Universal Logic, pp. 498–520. Springer, Switzerland (2015)Google Scholar
  17. 17.
    Mossakowski, T., Kutz, O., Codescu, M., Lange,C.: The distributed ontology, modeling and specification language. In: Del Vescovo, C.., Hahmann, T., Pearce, D., Walther, D. (eds.) WoMo 2013, CEUR-WS Online Proceedings, vol. 1081 (2013)Google Scholar
  18. 18.
    Mossakowski, T., Kutz, O., Lange, C.: Semantics of the distributed ontology language: institutes and institutions. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 212–230. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Palomino, M., Meseguer, J., Martí-Oliet, N.: A categorical approach to simulations. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 313–330. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  20. 20.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf. Control 76, 165–210 (1988). (Earlier version in Proceedings, International Symposium on the Semantics of Data Types, LNCS, vol. 173. Springer (1984))MathSciNetMATHGoogle Scholar
  21. 21.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2012) CrossRefMATHGoogle Scholar
  22. 22.
    Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: A formal definition of protocol indistinguishability and its verification using maude-NPA. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 162–177. Springer, Heidelberg (2014) Google Scholar
  23. 23.
    Schneider, M., Rudolph, S., Sutcliffe, G.: Modeling in OWL 2 without restrictions. In: Rodriguez-Muro, M., Jupp, S., Srinivas, K. (eds.) Proceedings of the 10th International Workshop on OWL: Experiences and Directions (OWLED 2013) Co-located with 10th Extended Semantic Web Conference (ESWC 2013), Montpellier, France, 26–27 May 2013, CEUR Workshop Proceedings, vol. 1080. CEUR-WS.org (2013)Google Scholar
  24. 24.
    Schröder, L., Mossakowski, T., Tarlecki, A., Klin, B., Hoffman, P.: Amalgamation in the semantics of CASL. Theor. Comput. Sci. 331(1), 215–247 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Seidenberg, J., Rector, A.L.: Web ontology segmentation: analysis, classification and use. In: Carr, L., De Roure, D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) Proceedings of the 15th international conference on World Wide Web, WWW 2006, pp. 13–22, Edinburgh, Scotland, UK, 23–26 May 2006. ACM (2006)Google Scholar
  26. 26.
    Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hierarchies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  27. 27.
    Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization. LNCS, vol. 5445. Springer, Heidelberg (2009) MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yazmin Angelica Ibañez
    • 1
  • Till Mossakowski
    • 2
  • Donald Sannella
    • 3
  • Andrzej Tarlecki
    • 4
  1. 1.Department of Computer ScienceUniversity of BremenBremenGermany
  2. 2.Faculty of Computer ScienceOtto-von-Guericke University of MagdeburgMagdeburgGermany
  3. 3.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghUK
  4. 4.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations