Generic Proof Scores for Generate & Check Method in CafeOBJ 

  • Kokichi Futatsugi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9200)


Generic proof scores for the generate & check method in CafeOBJ are described. The generic proof scores codify the generate & check method as parameterized modules in the CafeOBJ language independently of specific systems to which the method applies. Basic proof scores for a specific system can be obtained by instantiating the formal parameter modules of the parameterized modules with the actual specification modules of the specific system. The effectiveness of the generic proof scores is demonstrated by applying them to a couple of non-trivial examples.


Transition System Parameterized Module Transition Rule Reachable State Verification Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a great pleasure for the author (KF) to have the chance to prepare this paper for the Festschrift in honor of Professor Jos\(\acute{\mathrm {e}}\) Meseguer who has originated the rewriting logic and been leading the development of the area. The work reported in this paper is based on that development.

Comments from anonymous reviewers help to improve the quality of the paper and are appreciated.

This work was supported in part by Grant-in-Aid for Scientific Research (S) 23220002 from Japan Society for the Promotion of Science (JSPS).


  1. 1.
    Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state systems using narrowing. In: van Raamsdonk, F. (ed.) RTA. LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)Google Scholar
  2. 2.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    CafeOBJ (2015).
  4. 4.
    Chandy, K.M., Misra, J.: Parallel Program Design - a Foundation. Addison-Wesley, Boston (1989)zbMATHGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  6. 6.
    Coq (2015).
  7. 7.
    Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Futatsugi, K.: Verifying specifications with proof scores in CafeOBJ. In: Proceedings of 21st IEEE/ACM International Conference on Automated Software Engineering (ASE 2006), pp. 3–10. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Futatsugi, K.: Fostering proof scores in \({\sf {CafeOBJ}}\). In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 1–20. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Futatsugi, K.: Generate & check method for verifying transition systems in \({\sf {CafeOBJ}}\). In: Nicola, R.D., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 171–192. Springer, Switzerland (2015) Google Scholar
  11. 11.
    Futatsugi, K., Găină, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor. Comput. Sci. 464, 90–112 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Găină, D., Lucanu, D., Ogata, K., Futatsugi, K.: On automation of OTS/CafeOBJ method. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 578–602. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guttag, J.V., Horning, J.J., Garland, S.J., Jones, K.D., Modet, A., Wing, J.M.: Larch Languages and Tools for Formal Specification. Springer, New York (1993)CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
    Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283, p. 3. Springer, Heidelberg (2002) zbMATHGoogle Scholar
  19. 19.
    Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. Technical report, University of Illinois at Urbana-Champaign (2010)Google Scholar
  22. 22.
    Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Center for Software Verification (RCSV)Japan Advanced Institute of Science and Technology (JAIST)NomiJapan

Personalised recommendations