Constitutive Model for Clays Under the ISA Framework

  • W. Fuentes
  • M. Hadzibeti
  • Theodoros Triantafyllidis


The Intergranular Strain Anisotropy ISA framework is a novel approach to develop elastoplastic models wherein a yield surface is defined in terms of strain increments. For this purpose, the loading-unloading conditions are satisfied within the space of the intergranular strain, this latter being a state variable “following” the strain rate. With this, the model aims to improve the simulations under cyclic loading while keeping their good capabilities at monotonic loading. Within this article, a constitutive model for clays is developed under the ISA plasticity framework. The model adopts some parameters from the modified Cam-Clay model and others to describe the evolution of the integranular strain and its effect on the model response. Some illustrative simulations are provided to analyze the model performance under cyclic loading. The simulations show a qualitative behavior in agreement with some experiments. Possible improvements are discussed at the end of the article.


Clay model ISA plasticity Intergranular strain 


  1. 1.
    Dafalias, Y.: Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. J. Eng. Mech. ASCE 112(9), 966–987 (1986)Google Scholar
  2. 2.
    Dafalias, Y., Manzari, M., Papadimitriou, A.: Saniclay: simple anisotropic clay plasticity model. Int. J. Num. Anal. Meth. Geomech. 30, 1231–1257 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Fuentes, W.: Contributions in mechanical modelling of fill materials. PhD thesis, Karlsruhe Institute of Technology, KIT, Germany. Heft No. 179 (2014)Google Scholar
  4. 4.
    Fuentes, W., Triantafyllidis, T.: ISA model: a constitutive model for soils with yield surface in the intergranular strain space. Int. J. Num. Anal. Meth. Geomech. 39, 1235–1254 (2015)CrossRefGoogle Scholar
  5. 5.
    Fuentes, W., Triantafyllidis, T., Lizcano, A.: Hypoplastic model for sands with loading surface. Acta Geotech. 7, 177–192 (2012)CrossRefGoogle Scholar
  6. 6.
    Kolymbas, D.: Eine konstitutive Theorie für Boden und andere körnige Stoffe. Habilitation Thesis, Universität Karlsruhe, Germany. Institut für Boden- und Felsmechanik, Heft 109 (1988)Google Scholar
  7. 7.
    Leoni, M., Karstunen, M., Vermeer, P.: Anisotropic creep model for soft soils. Géotechnique 58, 215–226 (2008)CrossRefGoogle Scholar
  8. 8.
    Manzari, M., Dafalias, Y.: A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997)CrossRefGoogle Scholar
  9. 9.
    Masin, D.: A hypoplastic constitutive model for clays. Int. J. Numer. Anal. Meth. Geomech. 29(4), 311–336 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Niemunis, A.: Extended hypoplastic models for soils. Habilitation, Schriftenreihe des Institutes für Grundbau und Bodenmechanil der Ruhr-Universität Bochum, Germany. Heft 34 (2003)Google Scholar
  11. 11.
    Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)CrossRefGoogle Scholar
  12. 12.
    Niemunis, A., Prada-Sarmiento, L., Grandas-Tavera, C.: Paraelasticity. Acta Geotech. 6, 1–14 (2011)CrossRefGoogle Scholar
  13. 13.
    Wolffersdorff, V.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frictional Mater. 1, 251–271 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • W. Fuentes
    • 1
  • M. Hadzibeti
    • 1
  • Theodoros Triantafyllidis
    • 1
  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations