Peak Stress Obliquity in Drained and Undrained Sands. Simulations with Neohypoplasticity

  • Andrzej Niemunis
  • Carlos E. Grandas Tavera
  • Torsten Wichtmann
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 80)


The difference between undrained and drained peak friction angle is considerable (up tp \(10^\circ \)), despite identical densities and pressures (at peak). This cannot be explained using the elastoplastic formalism. An attempt is made to describe this effect with neohypoplasticity. For this purpose two types of nonlinearity are used, the well-known term \(Y m_{ij} \Vert \dot{\epsilon }\Vert \) and the novel skew-symmetric correction tensor which is added to the elastic stiffness.


Constitutive modelling Sand Dilatancy Peak friction angle Cyclic mobility 



The authors are grateful to the DFG (DFG-Forschergruppe FOR 1136) for financial support.


  1. 1.
    Bauer, E.: Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung. PhD thesis, Institut für Boden und Felsmechanik der Universität Karlsruhe (TH), Heft, Nr. 130 (1992)Google Scholar
  2. 2.
    Bažant, Z.P.: Endochronic inelasticity and incremental plasticity. Int. J. Solids Struct. 14, 691–714 (1978)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dafalias, F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effects. J. Eng. Mech. 130, 22–34 (2004)Google Scholar
  4. 4.
    Dafalias, Y.F.: Overview of constitutive models used in VELACS. In: Arulandan, K., Scott, R. (eds.) Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Proceedings of the International Conference in Davis, vol. 2, pp. 1293–1304. Balkema, California (1994)Google Scholar
  5. 5.
    Desrues, J., Chambon, R., Mokni, M., Mazerolle, F.: Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3), 529–546 (1996)CrossRefGoogle Scholar
  6. 6.
    Espino, E.: Quasi-statische Untersuchungen zur Elastizität von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Master’s thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie, Mai (2014)Google Scholar
  7. 7.
    Gajo, A., Wood, D.M.: Severn trent sand: a kinematic hardening constitutive model: q-p formulation. Géotechnique 49(5), 595–614 (1999)CrossRefGoogle Scholar
  8. 8.
    Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y.-S., Sato, T.: A simple gauge for local small strain measurements in the laboratory. Soils Found. 31(1), 169–180 (1991)CrossRefGoogle Scholar
  9. 9.
    Graham, J., Houlsby, G.T.: Anisotropic elsticity of a natural clay. Géotechnique 33(2), 165–180 (1983)CrossRefGoogle Scholar
  10. 10.
    Gudehus, G.: A comparison of some constitutive laws for soils under radially symmetric loading and unloading. In: Proceedings of the 3rd International Conference On Numerical Methods in Geomechanics, Balkema, Aachen (1979)Google Scholar
  11. 11.
    Herle, I.: Hypoplastizität und Granulometrie einfacher Korngerüste. PhD thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Nr. 142 (1997)Google Scholar
  12. 12.
    Hoque, E., Sato, T., Tatsuoka, F.: Performance evaluation of LDTs for use in triaxial tests. Geotech. Test. J. 20(2), 149–167 (1997)CrossRefGoogle Scholar
  13. 13.
    Knittel, L.J.: Fortgesetzte quasi-statische Untersuchungen zur Elastizität von Sand als Grundlage eines neuen hypoplastischen Stoffmodells. Master’s thesis, Institut für Boden- und Felsmechanik, Karlsruher Institut für Technologie (2014)Google Scholar
  14. 14.
    Loges, I., Niemunis, A.: Neohypoplasticity—estimation of small strain stiffness. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes. Numerical and Physical Modelling. Springer (2014)Google Scholar
  15. 15.
    Matsuoka, H., Nakai, T.: Stress-strain relationship of soil base on the SMP, constitutive equations of soils. In: Murayama, S., Schofield, A.N. (eds.) Proceedings of the 9th International Conference On Soil Mechanics and Foundation Engineering, Speciality Session 9. Japanese Society of Soil Mechanics and Foundation Engineering, IX ICSMFE, Tokyo (1997)Google Scholar
  16. 16.
    Niemunis, A.: Extended hypoplastic models for soils. Politechnika Gdańska, Habilitation, Monografia 34 (2003)Google Scholar
  17. 17.
    Niemunis, A., Prada-Sarmiento, L.F., Grandas-Tavera, C.E.: Paraelasticity. Acta Geotech. 6(2), 67–80 (2011)CrossRefGoogle Scholar
  18. 18.
    Niemunis, A., Wichtmann, T., Triantafyllidis, T.: A high-cycle accumulation model for sand. Comput. Geotech. 32(4), 245–263 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Richart, F.E.Jr. , Hall, J.R.Jr., Woods, R.D.: Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs (1970)Google Scholar
  20. 20.
    Sands, C.M., Chandler, H.W.: Simulations of cyclic shearing of sand at low effective stress. Géotechnique 61(11), 983–992 (2011)CrossRefGoogle Scholar
  21. 21.
    Taiebat, M., Dafalias, Y.: Sanisand: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Meth. Geomech. 32(8), 915–948 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Vermeer, P.: A five-constant model unifying well established concepts. In: Constituents Relay for Soils, Proceedings of the International Workshop in Grenoble, pp. 175–198. Balkema, Holland (1982)Google Scholar
  23. 23.
    von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohes.-Frict. Mat. 1, 251–271 (1996)CrossRefGoogle Scholar
  24. 24.
    von Wolffersdorf, P.-A.: Verformungsprognosen für Stützkonstruktionen. PhD thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe, Habilitationschrift, Heft Nr. 141 (1997)Google Scholar
  25. 25.
    Wichtmann, T., Triantafyllidis, T.: Influence of the grain size distribution curve of quartz sand on the small strain shear modulus \(G_{\max }\). J. Geotech. Geoenviron. Eng. 135(10), 1404–1418 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrzej Niemunis
    • 1
  • Carlos E. Grandas Tavera
    • 1
  • Torsten Wichtmann
    • 1
  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations