Interpretation of Vibratory Pile Penetration Based on Digital Image Correlation

  • J. Vogelsang
  • G. Huber
  • T. Triantafyllidis
  • T. Bender
Chapter

Abstract

A combined interpretation of force measurements together with the evaluation of dynamic motion around the pile based on digital image correlation (DIC) is performed to identify soil deformation during vibratory pile driving in model tests. The tests are executed under water-saturated 1g-conditions. We prove the occurrence of the so-called cavitational pile driving but without the experimental evidence of the forming of a cavity under the pile tip. Using the DIC results, first attempts are made to evaluate the volumetric cyclic deformation of soil around the pile tip during the vibro-penetration. The results show an alternation of contractancy and dilatancy in proximity of the pile tip with volumetric peak-to-peak strain amplitudes up to 2 %. They indicate drained or at least partially drained conditions. Based on the test results, existing phenomenological interpretations of soil deformation due to pile penetration are reviewed.

Keywords

Model pile Tip resistance Vibratory pile driving Slow and fast vibratory pile driving Cavitational and non-cavitational pile driving 

References

  1. 1.
    Carman, P.C.: Permeability of saturated sands, soils and clays. J. Agric. Sci. 29, 263–273 (1937)Google Scholar
  2. 2.
    Cudmani, R.O., Huber, G., Gudehus, G.: Zyklische und dynamische Penetration nichtbindiger Böden, Contribution to Workshop “Boden unter fast zyklischer Belastung”, Bochum (2000)Google Scholar
  3. 3.
    Cudmani, R.O.: Statische, alternierende und dynamische Penetration in nichtbindigen Böden. Diss., Publications of the Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, vol. 152 (2001)Google Scholar
  4. 4.
    Dierssen, G.: Ein bodenmechanisches Modell zur Beschreibung des Vibrationsrammens in körnigen Böden. Diss., Publications of the Institute of Soil Mechanics and Rock Mechanics, University of Karlsruhe, vol. 124 (1994)Google Scholar
  5. 5.
    Huber, G.: Vibrationsrammen: Großmaßstäbliche Versuche. Contribution to the Workshop “Vibrationsrammen”, Karlsruhe (1997)Google Scholar
  6. 6.
    Kozeny, J.: Ueber kapillare Leitung des Wassers im Boden. Sitzungsbericht Akademie der Wissenschaften, Wien 136(2a), 271–306 (1927)Google Scholar
  7. 7.
    Ni, Q., Hird, C.C., Guymer, I.: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Gotechnique 60(2), 121–132 (2009)CrossRefGoogle Scholar
  8. 8.
    Osinov, V.A., Chrisopoulos, St., Triantafyllidis, Th.: Numerical study of the deformation of saturated soil in the vicinity of a vibrating pile. Acta Geotech. (2012). doi:10.1007/s11440-012-0190-7
  9. 9.
    Osinov, V.A.: Numerical modelling of the effective-stress evolution in saturated soil around a vibrating pile toe. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, pp. 138–154. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Rodger, A.A., Littlejohn, G.: A study of vibratory pile driving in granular soils. Gotechnique 30(3), 269–293 (1980)CrossRefGoogle Scholar
  11. 11.
    Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-Injection pile installation in sand: Part II—Numerical and experimental investigation. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, pp. 103–131. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Schönit, M.: Online-Abschätzung der Rammguttragfähigkeit beim langsamen Vibrationsrammen in nichtbindigen Böden. Diss., Publications of the Institute for Technology and Management in Construction, University of Karlsruhe (2009)Google Scholar
  13. 13.
    Triantafyllidis, Th: Neue Erkenntnisse aus Messungen an tiefen Baugruben am Potsdamer Platz in Berlin, Bautechnik, 75. Heft 3, 133–154 (1998)Google Scholar
  14. 14.
    Vennemann, P.: JPIV-software package for Particle Image Velocimetry (2007). http://www.jpiv.vennemann-online.de
  15. 15.
    Vielsack, P., Storz, M.: Dynamics of vibratory pile driving. Workshop “Vibrationsrammen”, pp. 3–12, Karlsruhe (1997)Google Scholar
  16. 16.
    Viking, K.: The vibratory pile installation technique. TRANSVIB 2006, Gonin, Holeyman et Rocher-Lacoste (ed.), Editions du LCPC, pp. 65–82, Paris (2006)Google Scholar
  17. 17.
    Vogelsang, J., Chrisopoulos, S.: Experimentelle und numerische Untersuchungen zum Vibrationsrammen in nichtbindigem Boden. Beitrag zur Spezialsitzung “Forum für junge Geotechnik-Ingenieure”, 33. Baugrundtagung in Berlin (2014)Google Scholar
  18. 18.
    Vogelsang, J., Zachert, H., Huber, G., Triantafyllidis, Th.: Effects of soil deposition on the initial stress state in model tests: Experimental results and FE simulation. In: Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, pp. 1–21. Springer, Heidelberg (2015)Google Scholar
  19. 19.
    Vogelsang, J., Huber, G., Triantafyllidis, Th.: On soil deformation and stress redistribution around pressed-in and vibrated displacement pile tips. In Triantafyllidis, Th. (ed.) Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, pp. 44–59. Springer, Heidelberg (2015)Google Scholar
  20. 20.
    White, D.J., Bolton, M.D.: Displacement and strain paths during plane-strain model pile installation in sand. Gotechnique 54(6), 375–397 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Vogelsang
    • 1
  • G. Huber
    • 1
  • T. Triantafyllidis
    • 1
  • T. Bender
    • 1
  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations