Requirements, Concepts, and Selected Results for Model Tests on Pile Penetration

Chapter

Abstract

Designing and performing adapted model tests related to pile penetration is a major target of the central project of the research group GEOTECH. These tests shall allow to capture major aspects of pile penetration quantitatively and to obtain input data for numerical simulations. The tests are focused on the interaction of the pile and the soil in dry or saturated conditions. Guidelines are to keep the tests as simple as possible, realize boundary conditions that are convenient for numerical simulations, and to provide reliable information on the state of the soil at the beginning of and during the tests. Furthermore, implications induced by the measurements, e.g., lower stiffness of an instrumented pile or the use of glass walls enabling the application of digital image correlation have to be evaluated and considered in the numerical simulations as well. Examples demonstrate how the concepts have been implemented for the measurement of tip and friction force on model piles under monotonic, cyclic, and dynamic loading as well as for the evolution of pore water pressure. Based on selected results, size effects of the test devices and the role of the model material resp. its state are pointed out. The contribution includes a discussion on disturbing influences such as friction in the linear guiding system or between pile and glass wall.

Keywords

Model test Physical modeling Benchmark Pile driving 

References

  1. 1.
    Arnold, M., Franke, D., Bartl, U.: A solution to concurrent measurement of the normal and tangential earth pressure in model tests. Proceedings of the International Symposium Geotechnical Measurements and Modeling, Karlsruhe (2003)Google Scholar
  2. 2.
    ASTM Standard D4254–91: Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA (2006)Google Scholar
  3. 3.
    Bolton, M.D., Gui, M.W.: The Study of Relative Density and Boundary Effects for Cone Penetration Tests in Centrifuge. Report CUED/D-SOILS/TR256 (1993)Google Scholar
  4. 4.
    Choi, S.-K., Lee, M.-J., Choo, H., Tumay, M.T., Lee, W.: Preparation of a large size granular specimen using a rainer system with a porous plate. Geotech. Test. J. 33(1), 45–54 (2009)Google Scholar
  5. 5.
    Darwin, G.H.: On the horizontal thrust of a mass of sand. Proc. Inst. Civil Eng. 71, 350–378 (1883)Google Scholar
  6. 6.
    Dave, T.N., Dasaka, S.M.: Assessment of a portable traveling pluviator to prepare reconstituted sand specimen. Geomech. Eng. 4(2), 407–423 (2012)CrossRefGoogle Scholar
  7. 7.
    DIN 18126: Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung (1996)Google Scholar
  8. 8.
    Ezzein, F.M., Bathurst, R.J.: A transparent sand for geotechnical laboratory modeling. Geotech. Test. J. 34(6), 1–12 (2011)Google Scholar
  9. 9.
    Fretti, C.: Lo Presti, D.C.F., Pedroni, S.: A pluvial deposition method to reconstitute well-graded sand specimens. Geotech. Test. J. 18(2), 292–298 (1995)CrossRefGoogle Scholar
  10. 10.
    Holzlöhner, U.: Techniques of model testing. Contribution to the Symposium “Messtechnik im Erd- und Grundbau”, Karlsruhe, pp. 119–126 (1983)Google Scholar
  11. 11.
    Janssen, H.A.: Versuche über Getreidedruck in Silozellen. Zeitschrift Verein deutscher Ingenieure, Band XXXIX., pp. 1045–1049 (1895)Google Scholar
  12. 12.
    Lambe, B.M.: Predictions in soil engineering. Géotechnique 23(2), 151–202 (1973)CrossRefGoogle Scholar
  13. 13.
    Lehane, B.M., White, D.J.: Lateral stress changes and shaft friction for model displacement piles in sand. Can. Geotech. J. 42, 1039–1052 (2005)CrossRefGoogle Scholar
  14. 14.
    Maier, C.: Herstellung trockener Großproben mit verschiedenen Lagerungsdichten. Diploma Thesis at the Institute of soil mechanics and rock mechanics, Karlsruhe Institute of Technology (2011)Google Scholar
  15. 15.
    Mayne, P.W., Kulhawy, F.H.: Calibration chamber database and boundary effects correction for CPT data. Proceedings of the 1st International Symposium on Calibration Chamber Testing, pp. 257–264. Potsdam and New York (1991)Google Scholar
  16. 16.
    Negro, P., Verzeletti, J. a. S. a. P. D., Molina, G., Pedroni, S.: TRISEE: 3D site effects and soil-foundation interaction in earthquake and vibration risk evaluation—Task 3 Large-scale geotechnical experiments on soil-foundation interaction. Technical report, Special Pub. No. I.98.73, ELSA Lab., JRC, Ispra, Italy (1998)Google Scholar
  17. 17.
    Negro, P., Paolucci, R., Pedretti, S., Faccioli, E.: Large scale soil-structure interaction experiments on sand under cyclic loading. In: Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, volume, Bd. 14, Paper No. 1191. A.A. Balkema (2000)Google Scholar
  18. 18.
    Ni, Q., Hird, C.C., Guymer, I.: Physical modeling of pile penetration in clay using transparent soil and particle image velocimetry. Géotechnique 60(2), 121–132 (2009)CrossRefGoogle Scholar
  19. 19.
    Parkin, A., Lunne, T.: Boundary effects in the laboratory calibration of a cone penetrometer in sand. In: Proceedings of the 2nd European Symposium on Penetration Testing, vol. 2, Balkema, Amsterdam, pp. 761–768 (1982)Google Scholar
  20. 20.
    Rimoy, S.P.: Ageing and axial cyclic loading studies of displacement piles in sands. Dissertation,Imperial College London(2013)Google Scholar
  21. 21.
    Robinsky, E.I., Morrison, C.F.: Sand displacement and compaction around model friction piles. Can. Geotech. J. I(2), 81–93 (1964)Google Scholar
  22. 22.
    Salgado, R., Mitchell, J.K., Jamiolkowski, M.: Calibration chamber size effects on penetration resistance in sands. J. Geotech. Geoenviron. Eng. 124(9), 878–888 (1998)CrossRefGoogle Scholar
  23. 23.
    Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-Injection pile installation in sand: Part II - Numerical and experimental investigation. In: Triantafyllidis, Th (ed.) Holistic simulation of geotechnical installation processes—numerical and physical modeling, pp. 103–131. Springer, Heidelberg (2015)Google Scholar
  24. 24.
    Schofield, A.N.: Cambridge geotechnical centrifuge operations. Géotechnique 30(3), 227–268 (1980)CrossRefGoogle Scholar
  25. 25.
    Thanh Chi, N., Thuy Loi, D.h., Viet Nam, H.N.: Investigation into soil displacement near a jacked-in pile in sand. Master thesis at the Delft University of Technology (2008)Google Scholar
  26. 26.
    Thomas, S., Kempfert, H.-G.: Experimentelle Erkenntnisse zum zyklisch axialen Pfahltragverhalten, Geotechnik 36. Heft 3, 169–179 (2013)Google Scholar
  27. 27.
    Vennemann, P.: JPIV-software package for particle image velocimetry, (2007), http://www.jpiv.vennemann-online.de
  28. 28.
    Viking, K.: The vibratory pile installation technique. TRANSVIB 2006, Gonin, Holeyman et Rocher-Lacoste (ed.), Editions du LCPC, Paris, pp. 65–82 (2006)Google Scholar
  29. 29.
    Vogelsang, J., Huber, G., Triantafyllidis, Th: A large scale soil-structure interface testing device. Geotech. Test. J. 36(5), 613–625 (2013)CrossRefGoogle Scholar
  30. 30.
    Vogelsang, J., Huber, G., Triantafyllidis, Th.: Zur Erfassung von Erddruckkräften auf Wand- und Pfahlstrukturen im Modellversuch. Messen in der Geotechnik 2014, publications of the Institut für Grundbau und Bodenmechanik of the University of Braunschweig—Institute of Technology, vol. 98, pp. 401–420 (2014)Google Scholar
  31. 31.
    Vogelsang, J., Chrisopoulos, S.: Experimentelle und numerische Untersuchungen zum Vibrationsrammen in nichtbindigem Boden. Technical papers of the special session "Forum for young geotechnical engineers", 33. Baugrundtagung in Berlin, pp. 195–202 (2014)Google Scholar
  32. 32.
    Vogelsang, J., Zachert, H., Huber, G., Triantafyllidis, Th.: Effects of soil deposition on the initial stress state in model tests: Experimental results and FE simulation. In: Triantafyllidis, Th. (ed.) Holistic simulation of geotechnical installation processes—numerical and physical modeling, pp. 1–21. Springer, Heidelberg (2015)Google Scholar
  33. 33.
    Vogelsang, J., Huber, G., Triantafyllidis, Th.: On soil deformation and stress redistribution around pressed-in and vibrated displacement pile tips. In: Triantafyllidis, Th. (ed.) Holistic simulation of geotechnical installation processes—numerical and physical modeling, pp. 44–59. Springer, Heidelberg (2015)Google Scholar
  34. 34.
    Vogelsang, J., Huber, G., Triantafyllidis, Th., Bender, T.: Interpretation of vibratory pile penetration based on Digital Image Correlation. In: Triantafyllidis, Th. (ed.) Holistic simulation of geotechnical installation processes—Benchmarks and numerical results. Springer, Heidelberg (2015)Google Scholar
  35. 35.
    Walker, B.P., Whitaker, T.: An apparatus for forming uniform beds of sand for model foundation tests. Géotechnique 17(2), 161–167 (1967)CrossRefGoogle Scholar
  36. 36.
    White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619–631 (2003)CrossRefGoogle Scholar
  37. 37.
    White, D.J., Bolton, M.D.: Displacement and strain paths during plane-strain model pile installation in sand. Géotechnique 54(6), 375–397 (2004)CrossRefGoogle Scholar
  38. 38.
    White, D.J.: Contributions to géotechnique 1948–2008: physical modeling. Géotechnique 58(5), 413–421 (2008)CrossRefGoogle Scholar
  39. 39.
    Woods, R., Athanasopoulos-Zekkos, A., Gkrizi, A., Pietrangelo, A., Zimmerman, A.: Measurement of ground motion near piles during driving. Geotech. Spec. Publ. 233, 512–521 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Soil Mechanics and Rock MechanicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations