TDQMed: Managing Collections of Complex Test Data

  • Johannes HeldEmail author
  • Richard Lenz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9282)


Medical devices like Medical Linear Accelerators (LINAC) are extensively tested before they are used in routine practice. Such systems typically interact with multiple other systems that produce complex input data, like medical images annotated with extensive metadata. Before such a system is actually used in a hospital with real patients it has to be tested with test data as realistic as possible. Suitable test data, however, cannot be easily generated. For this reason vendors typically accumulate large collections of patient files over the years to have them available for various test scenarios. In the TDQMed project we have developed methods and tools that enable a tester to estimate both the quality of a test data collection and its applicability for a particular test goal. A prototype system has been implemented to demonstrate the feasibility of measuring specific test data related quality criteria like coverage of test space and closeness to reality. An evaluation with professional testers indicates that the overall approach is promising.


Test-data quality Knowledge discovery Information extraction and integration 



This project is supported by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013G.


  1. 1.
    Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality assessment and improvement. ACM Comput. Surv. 41(3), 1–52 (2009)CrossRefGoogle Scholar
  2. 2.
    Bendix, F., Kosara, R., Hauser, H.: Parallel sets: visual analysis of categorical data. In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 133–140, No. 1. IEEE (2005)Google Scholar
  3. 3.
    Carreira-Perpiñán, M.: A review of dimension reduction techniques. Technical report, University of Sheffield, Sheffield (1997)Google Scholar
  4. 4.
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  5. 5.
    Deza, E., Deza, M.M.: Encyclopedia of Distances. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Di Nardo, D., Alshahwan, N., Briand, L., Labiche, Y.: Coverage-based test case prioritisation: an industrial case study. In: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, March 2013Google Scholar
  7. 7.
    Juran, J.M.: Juran on Planning for Quality. Free Press, New York (1988)Google Scholar
  8. 8.
    Law, M.Y., Liu, B.: Informatics in radiology: DICOM-RT and its utilization in radiation therapy. Radiographics Rev. Publ. Radiol. Soc. North Am. Inc. 29(3), 655–667 (2011)Google Scholar
  9. 9.
    Mildenberger, P., Eichelberg, M., Martin, E.: Introduction to the DICOM standard. Eur. Radiol. 12(4), 920–927 (2002)CrossRefGoogle Scholar
  10. 10.
    Mustra, M., Delac, K., Grgic, M.: Overview of the DICOM standard. In: 50th International Symposium, ELMAR, pp. 10–12. IEEE, Zadar, September 2008Google Scholar
  11. 11.
    Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and generating functional tests. Commun. ACM 31(6), 676–686 (1988)CrossRefGoogle Scholar
  12. 12.
    Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45(4), 211–218 (2002)CrossRefGoogle Scholar
  13. 13.
    Redman, T.C.: Data Quality: The Field Guide, data manag edn. Digital Press, Newton (2001)Google Scholar
  14. 14.
    Sommerville, I.: Software Engineering. International Computer Science Series, 8th edn. Addison-Wesley, Reading (2007)zbMATHGoogle Scholar
  15. 15.
    Stahl, H.: Clusteranalyse großer Objektmengen mit problemorientierten Distanzmaßen. Verlag Harri Deutsch, Thun, Frankfurt am Main, reihe wirtschaftswissenschaften edn. (1985)Google Scholar
  16. 16.
    Thomas, S.W., Hemmati, H., Hassan, A.E., Blostein, D.: Static test case prioritization using topic models. Empirical Softw. Eng. 19(1), 182–212 (2014)CrossRefGoogle Scholar
  17. 17.
    Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996)CrossRefGoogle Scholar
  18. 18.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–34 (1996)CrossRefGoogle Scholar
  19. 19.
    Wang, R.Y., Ziad, M., Lee, Y.W.: Data Quality. Springer - Kluwer Academic, Boston (2002)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Science 6 (Data Management)Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations