Biological Immunity and Software Resilience: Two Faces of the Same Coin?

  • Marco Autili
  • Amleto Di Salle
  • Francesco Gallo
  • Alexander Perucci
  • Massimo Tivoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9274)


Biological systems modeling and simulation is an important stream of research for both biologists and computer scientists. On the one hand, biologists ask for systemic approaches to model biological systems to the purpose of simulating them on a computer and predicting their behavior, which is resilient by nature. This would limit as much as possible the number of experiments in laboratory, which are known to be expensive, often impracticable, hardly reproducible, and slow. On the other hand, beyond facing the development challenges related to the achievement of the resilience to be offered by biological system simulators, computer scientists ask for a well-established engineering methodology to systematically deal with the peculiarities of software resilient systems, in their more general sense. In line with this, in this paper we report on our preliminary study of immune systems (a particular kind of biological systems) aimed at devising software abstractions that enable the systematic modeling of resilient systems and their automated treatment. We propose a bio-inspired concept architecture for structuring resilient systems based on the Akka implementation of the widely-known Actor Model, which supports scalable and resilient concurrent computation. To the best of our knowledge, this work represents a first preliminary step towards devising a bio-inspired paradigm for engineering the development of resilient software systems.


Actor Model Undesired Behavior Resilient System Concept Architecture Asynchronous Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bio-pepa: A framework for the modelling and analysis of biological systems. Theoretical Computer Science, 410(33–34), 3065–3084 (2009)Google Scholar
  2. 2.
    Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)CrossRefGoogle Scholar
  3. 3.
    Chandra, A.: Synergy between biology and systems resilience, master’s thesis, missouri university of science and technology (2010)Google Scholar
  4. 4.
    Chaouiya, C.: Petri net modelling of biological networks. Briefings Bioinform. 8(4), 210–219 (2007)CrossRefGoogle Scholar
  5. 5.
    Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based modelling, symmetries, refinements. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 103–122. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Deeds, E.J., Krivine, J., Feret, J., Danos, V., Fontana, W.: Combinatorial complexity and compositional drift in protein interaction networks. PLoS ONE 7(3), 03 (2012)CrossRefGoogle Scholar
  8. 8.
    Dematté, L., Priami, C., Romanel, A.: The blenx language: a tutorial. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Faeder, J., Blinov, M., Hlavacek, W.: Rule-based modeling of biochemical systems with bionetgen. In: Maly, I.V. (ed.) Systems Biology, volume 500 of Methods in Molecular Biology, pp. 113–167. Humana Press (2009)Google Scholar
  10. 10.
    Farmer, J., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Physica D 22(13), 187–204 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)CrossRefGoogle Scholar
  12. 12.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Hardy, S., Robillard, P.N.: Pn: Modeling and simulation of molecular biology systems using petri nets: modeling goals of various approaches. J. Bioinform. Comput. Biol. 2–4, 2004 (2004)zbMATHGoogle Scholar
  15. 15.
    Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for artificial intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence. pp. 235–245. Standford, CA, August 1973Google Scholar
  16. 16.
    Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Design Principles for the Immune System and Other Distributed Autonomous Systems, pp. 3–26. Oxford University Press (2000)Google Scholar
  17. 17.
    Höller, A., Kajtazovic, N., Preschern, C., Kreiner, C.: Formal fault tolerance analysis of algorithms for redundant systems in early design stages. In: Majzik, I., Vieira, M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 71–85. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Majzik, I., Vieira, M. (eds.): SERENE 2014. LNCS, vol. 8785. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Janeway Jr., C., Travers, P., Walport, M., et al.: Immunobiology: The Immune System in Health and Disease, 5th edn. Garland Science, USA (2013) Google Scholar
  20. 20.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform. 7, 56 (2006)CrossRefGoogle Scholar
  21. 21.
    Krepska, E., Bonzanni, N., Feenstra, A., Fokkink, W.J., Kielmann, T., Bal, H.E., Heringa, J.: Design issues for qualitative modelling of biological cells with petri nets. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 48–62. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  22. 22.
    Laibinis, L., Klionskiy, D., Troubitsyna, E., Dorokhov, A., Lilius, J., Kupriyanov, M.: Modelling resilience of data processing capabilities of CPS. In: Majzik, I., Vieira, M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 55–70. Springer, Heidelberg (2014) Google Scholar
  23. 23.
    Lawen, A.: Apoptosisan introduction. BioEssays 25(9), 888–896 (2003)CrossRefGoogle Scholar
  24. 24.
    Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based models for the analysis of cell signaling networks. Biochem. 49(15), 3216–3224 (2010)CrossRefGoogle Scholar
  25. 25.
    Nieh, J.C.: A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr. Biol. 20(4), 310–315 (2010)CrossRefGoogle Scholar
  26. 26.
    Papin, J.A., Palsson, B.O.: Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. J. Theoret. Biol. 227(2), 283–297 (2004)CrossRefGoogle Scholar
  27. 27.
    Sackmann, A., Heiner, M., Koch, I.: Application of petri net based analysis techniques to signal transduction pathways, BMC Bioinform. 7–482 (2006)Google Scholar
  28. 28.
    Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Meth. 8(2), 177–183 (2011)CrossRefGoogle Scholar
  29. 29.
    Srivastavawz, R., Youw, L., Summersy, J., Yin, J.: on stochastic vs. deterministic modeling of intracellular viral kinetics (2002)Google Scholar
  30. 30.
    Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5) (2012)Google Scholar
  31. 31.
    Watanabe, Y., Ishiguro, A., Shirai, Y., Uchikawa, Y.: Emergent construction of behavior arbitration mechanism based on the immune system. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, pp. 481–486 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marco Autili
    • 1
  • Amleto Di Salle
    • 1
  • Francesco Gallo
    • 1
  • Alexander Perucci
    • 1
  • Massimo Tivoli
    • 1
  1. 1.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità dell’AquilaL’AquilaItaly

Personalised recommendations