Advertisement

Waste Management as an IoT-Enabled Service in Smart Cities

  • Alexey MedvedevEmail author
  • Petr Fedchenkov
  • Arkady Zaslavsky
  • Theodoros Anagnostopoulos
  • Sergey Khoruzhnikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9247)

Abstract

Intelligent Transportation Systems (ITS) enable new services within Smart Cities. Efficient Waste Collection is considered a fundamental service for Smart Cities. Internet of Things (IoT) can be applied both in ITS and Smart cities forming an advanced platform for novel applications. Surveillance systems can be used as an assistive technology for high Quality of Service (QoS) in waste collection. Specifically, IoT components: (i) RFIDs, (ii) sensors, (iii) cameras, and (iv) actuators are incorporated into ITS and surveillance systems for efficient waste collection. In this paper we propose an advanced Decision Support System (DSS) for efficient waste collection in Smart Cities. The system incorporates a model for data sharing between truck drivers on real time in order to perform waste collection and dynamic route optimization. The system handles the case of ineffective waste collection in inaccessible areas within the Smart City. Surveillance cameras are incorporated for capturing the problematic areas and provide evidence to the authorities. The waste collection system aims to provide high quality of service to the citizens of a Smart City.

Keywords

Waste collection Smart city Internet of Things (IoT) Intelligent transportation systems Surveillance systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Centre of Regional Science. Vienna University of Technology. Smart Cities. Ranking of European Medium-Sized Cities (accessed on: December 23, 2014). http://www.smart-cities.eu
  2. 2.
    Guillemin, P., Friess, P.: Internet of things strategic research roadmap. The Cluster of European Research Projects, Tech. Rep., September 2009 (accessed on: December 23, 2014). http://www.internet-of-things-research.eu
  3. 3.
    Delicato, F.C., Pires, P.F., Batista, T., Cavalcante, E., Costa, B., Barros, T.: Towards an IoT ecosystem. In: The Proceedings of the 1st ACM International Workshop on Software Engineering for Systems-of-Systems, SESoS 2013, Montpellier, France, pp. 25–28, July 2013Google Scholar
  4. 4.
    Lingling, H., Haifeng, L., Xu, X., Jian, L.: An intelligent vehicle monitoring system, based on internet of things. In: IEEE 7th International Conference on Computational Intelligence and Security (CIS), Hainan, pp. 231–233, December 2011Google Scholar
  5. 5.
    Ghose, M.K., Dikshit, A.K., Sharma, S.K.: A GIS based transportation model for solid waste disposal – A case study on Asansol municipality. Journal of Waste Management 26(11), 1287–1293 (2006)CrossRefGoogle Scholar
  6. 6.
    Nuortio, T., Kytojoki, J., Niska, H., Braysy, O.: Improved route planning and scheduling of waste collection and transport. Journal of Expert Systems with Applications 30(2), 223–232 (2006)CrossRefGoogle Scholar
  7. 7.
    Li, J.Q., Borenstein, D., Mirchandani, P.B.: Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil. Journal of Omega 36(6), 1133–1149 (2008)CrossRefGoogle Scholar
  8. 8.
    Zamorano, M., Molero, E., Grindlay, A., Rondriquez, M.L., Hurtado, A., Calvo, F.J.: A planning scenario for the application of geographical information systems in municipal waste collection: A case of Churriana de la Vega (Granada, Spain). Journal of Resources, Conservation and Recycling 54(2), 123–133 (2009)CrossRefGoogle Scholar
  9. 9.
    Tavares, G., Zsigraiova, Z., Semiao, V., Carvalho, M.G.: Optimisation of MSW collection routes for minimum fuel consumption using 3D GIS modeling. Journal of Waste Management 29(3), 1176–1185 (2009)CrossRefGoogle Scholar
  10. 10.
    Benjamin, A.M., Beasley, J.E.: Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities. Journal of Computers & Operations Research 37(12), 2270–2280 (2010)CrossRefGoogle Scholar
  11. 11.
    Son, L.H.: Optimizing Municipal Solid Waste collection using Chaotic Particle Swarm Optimization in GIS based environments: A case study at Danang city, Vietnam. Journal of Expert Systems with Applications 41(18), 8062–8074 (2014)CrossRefGoogle Scholar
  12. 12.
    Guerrero, L.A., Maas, G., Hogland, W.: Solid waste management challenges for cities in developing countries. Journal of Waste Management 33(1), 220–232 (2013)CrossRefGoogle Scholar
  13. 13.
    Marshall, R.E., Farahbakhsh, K.: Systems approaches to integrated solid waste management in developing countries. Journal of Waste Management 33(4), 988–1003 (2013)CrossRefGoogle Scholar
  14. 14.
    Medvedev, A., Zaslavsky, A., Grudinin, V., Khoruzhnikov, S.: Citywatcher: annotating and searching video data streams for smart cities applications. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2014. LNCS, vol. 8638, pp. 144–155. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Medvedev, A., Zaslavsky, A., Khoruzhnikov, S., Grudinin, V.: Reporting road problems in smart cities using OpenIoT framework. In: Podnar Žarko, I., Pripužić, K., Serrano, M. (eds.) FP7 OpenIoT Project Workshop 2014. LNCS, vol. 9001, pp. 169–182. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Sensing as a service model for smart cities supported by Internet of Things. Transactions on Emerging Telecommunications Technologies 25(1), pp. 81–93Google Scholar
  17. 17.
    Anagnostopoulos, T.V., Zaslavsky, A.: Effective waste collection with shortest path semi-static and dynamic routing. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2014. LNCS, vol. 8638, pp. 95–105. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    OpenStreetMap Webpage (accessed on 03 March 2015). https://www.openstreetmap.org
  19. 19.
    Nominatim Wiki Webpage (accessed on 03 March 2015). http://wiki.openstreetmap.org/wiki/Nominatim
  20. 20.
    Dantzig, G.B., Ramser, J.H.: The Truck Dispathing problem. Management Science 6(1), 80–91 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    JSPRIT Webpage (accessed on 15 April 2015). http://jsprit.github.io/
  22. 22.
    Open-VRP Webpage (accessed on 15 April 2015). https://github.com/mck-/Open-VRP/
  23. 23.
    OptaPlanner Webpage (accessed on 15 April 2015). http://www.optaplanner.org/
  24. 24.
    SYMPHONY Webpage (accessed on 15 April 2015). https://projects.coin-or.org/SYMPHONY/
  25. 25.
    VRP Spreadsheet Solver Webpage (accessed on 27 April 2015). http://verolog.deis.unibo.it/vrp-spreadsheet-solver/
  26. 26.
    TSP Webpage (accessed on 27 April 2015). http://en.wikipedia.org/wiki/Travelling_salesman_problem/
  27. 27.
    GraphHopper Webpage (accessed on 27 April 2015). https://graphhopper.com/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexey Medvedev
    • 1
    Email author
  • Petr Fedchenkov
    • 1
  • Arkady Zaslavsky
    • 1
    • 2
  • Theodoros Anagnostopoulos
    • 1
    • 3
  • Sergey Khoruzhnikov
    • 1
  1. 1.ITMO UniversitySt.-PetersburgRussia
  2. 2.CSIROMelbourneAustralia
  3. 3.Community Imaging GroupUniversity of OuluOuluFinland

Personalised recommendations