International Conference on Computer Analysis of Images and Patterns

CAIP 2015: Computer Analysis of Images and Patterns pp 300-312 | Cite as

Multiscale Blood Vessel Delineation Using B-COSFIRE Filters

  • Nicola Strisciuglio
  • George Azzopardi
  • Mario Vento
  • Nicolai Petkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9257)

Abstract

We propose a delineation algorithm that deals with bar-like structures of different thickness. Detection of linear structures is applicable to several fields ranging from medical images for segmentation of vessels to aerial images for delineation of roads or rivers. The proposed method is suited for any delineation problem and employs a set of B-COSFIRE filters selective for lines and line-endings of different thickness. We determine the most effective filters for the application at hand by Generalized Matrix Learning Vector Quantization (GMLVQ) algorithm. We demonstrate the effectiveness of the proposed method by applying it to the task of vessel segmentation in retinal images. We perform experiments on two benchmark data sets, namely DRIVE and STARE. The experimental results show that the proposed delineation algorithm is highly effective and efficient. It can be considered as a general framework for a delineation task in various applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Rawi, M., Qutaishat, M., Arrar, M.: An improved matched filter for blood vessel detection of digital retinal images. Computer in Biology and Medicine 37(2), 262–267 (2007)CrossRefGoogle Scholar
  2. 2.
    Azzopardi, G., Petkov, N.: Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recognition Letters 34, 922–933 (2013)CrossRefGoogle Scholar
  3. 3.
    Azzopardi, G., Petkov, N.: Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 490–503 (2013)CrossRefGoogle Scholar
  4. 4.
    Azzopardi, G., Rodríguez-Sánchez, A., Piater, J., Petkov, N.: A push-pull CORF model of a simple cell with antiphase inhibition improves SNR and contour detection. PLoS ONE 9(7), e98424 (2014)CrossRefGoogle Scholar
  5. 5.
    Azzopardi, G., Strisciuglio, N., Vento, M., Petkov, N.: Trainable COSFIRE filters for vessel delineation with application to retinal images. Medical Image Analysis 19(1), 46–57 (2015)CrossRefGoogle Scholar
  6. 6.
    Chauduri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood-vessels in retinal images using two-dimensional matched-filters. IEEE Transactions on Medical Imaging 8(3), 263–269 (1989)CrossRefGoogle Scholar
  7. 7.
    Chutatape, O., Liu Zheng, Krishnan, S.: Retinal blood vessel detection and tracking by matched gaussian and kalman filters. In: Chang, H., Zhang, Y. (eds.) Proc. 20th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS 1998), vol. 17, pp. 3144–9 (1998)Google Scholar
  8. 8.
    Fraz, M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A., Owen, C., Barman, S.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering 59(9), 2538–2548 (2012)CrossRefGoogle Scholar
  9. 9.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19(3), 203–210 (2000)CrossRefGoogle Scholar
  10. 10.
    Joachims, T.: Estimating the generalization performance of an svm efficiently. In: Proceedings of the Seventeenth International Conference on Machine Learning, ICML 2000, pp. 431–438. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  11. 11.
    Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika 36(1–2), 149–176 (1949)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Lam, B., Gao, Y., Liew, A.C.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Transactions on Medical Imaging 29(7), 1369–1381 (2010)CrossRefGoogle Scholar
  13. 13.
    Liu, I., Sun, Y.: Recursive tracking of vascular networks in angiograms based on the detection deletion scheme. IEEE Transactions on Medical Imaging 12(2), 334–341 (1993)CrossRefGoogle Scholar
  14. 14.
    Marin, D., Aquino, A., Emilio Gegundez-Arias, M., Manuel Bravo, J.: A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features. IEEE Transactions on Medical Imaging 30(1), 146–158 (2011)CrossRefGoogle Scholar
  15. 15.
    Martinez-Pérez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Medical Image Analysis 11(1), 47–61 (2007)CrossRefGoogle Scholar
  16. 16.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  17. 17.
    Muduli, P., Pati, U.: A novel technique for wall crack detection using image fusion. In: 2013 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6, January 2013Google Scholar
  18. 18.
    Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proc. of the SPIE - The International Society for Optical Engineering, Medical Imaging 2004, Image Processing, San Diego. CA, USA, February 16–19, 2004, pp. 648–56. (2004)Google Scholar
  19. 19.
    Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T., Ter Haar Romeny, B., Zimmerman, J., Zuiderveld, K.: Adaptative Histogram Equalization and its Varations. Computer Vision Graphics and Image Processing 39(3), 355–368 (1987)CrossRefGoogle Scholar
  20. 20.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging 26(10), 1357–1365 (2007)CrossRefGoogle Scholar
  21. 21.
    Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  23. 23.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  24. 24.
    Zana, F., Klein, J.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Medical Imaging 10(7), 1010–1019 (2001)MATHGoogle Scholar
  25. 25.
    Zhang, L., Zhang, Y., Wang, M., Li, Y.: Adaptive river segmentation in sar images. Journal of Electronics (China) 26(4), 438–442 (2009)CrossRefGoogle Scholar
  26. 26.
    Zhou, L., Rzeszotarski, M., Singerman, L., Chokreff, J.: The detection and quantification of retinopathy using digital angiograms. IEEE Transactions on Medical Imaging 13(4), 619–626 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicola Strisciuglio
    • 1
    • 2
  • George Azzopardi
    • 1
    • 3
  • Mario Vento
    • 2
  • Nicolai Petkov
    • 1
  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Computer Engineering and Electrical Engineering and Applied MathematicsUniversity of SalernoSalernoItaly
  3. 3.Intelligent Computer SystemsUniversity of MaltaMsidaMalta

Personalised recommendations