International Conference on Machines, Computations, and Universality

MCU 2015: Machines, Computations, and Universality pp 129-148 | Cite as

An Intrinsically Universal Family of Causal Graph Dynamics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9288)

Abstract

Causal Graph Dynamics generalize Cellular Automata, extending them to bounded degree, time varying graphs. The dynamics rewrites the graph in discrete time-steps, with respect to two physics-like symmetries: causality (there exists a bounded speed of information propagation) and shift-invariance (the rewriting acts everywhere the same). Intrinsic universality is the ability of the instance of a model to simulate all other instances, while preserving the structure of the computation. We present here an intrinsically universal family of Causal Graph Dynamics, and give insight on why it seems impossible to improve this result to the existence of a unique intrinsically universal instance.

References

  1. 1.
    Arrighi, P., Dowek, G.: Causal graph dynamics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 54–66. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31585-5_9 CrossRefGoogle Scholar
  2. 2.
    Arrighi, P., Fargetton, R., Wang, Z.: Intrinsically universal one-dimensional quantum cellular automata in two flavours. Fundam. Inform. 21, 1001–1035 (2009). doi:10.3233/FI-2009-0041 MathSciNetMATHGoogle Scholar
  3. 3.
    Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat. Comput. 11, 13–22 (2012). doi:10.1007/s11047-011-9277-6 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Arrighi, P., Martiel, S.: Generalized Cayley graphs and cellular automata over them. In: Proceedings of GCM 2012, pp. 129–143, Bremen, September 2012. arXiv:1212.0027
  5. 5.
    Arrighi, P. Martiel, S. Nesme, V.: Generalized Cayley graphs and cellular automata over them. submitted (long version) (2013). arXiv:1212.0027
  6. 6.
    Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 439–450. Springer, Heidelberg (1997). doi:10.1007/BFb0023479 CrossRefGoogle Scholar
  7. 7.
    Martiel, S., Martin, B.: Intrinsic universality of causal graph dynamics. In: Neary, T., Cook, M. (eds.) Proceedings, Machines, Computations and Universality 2013, pp. 137–149, Zürich, Switzerland, 09 September 2013–11 September 2013, Electronic Proceedings in Theoretical Computer Science 128. Open Publishing Association (2013). doi:10.4204/EPTCS.128.19
  8. 8.
    Martin, B.: Cellular automata universality revisited. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 329–339. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  9. 9.
    Mazoyer, J.: An overview of the firing squad synchronization problem. In: Choffrut, C. (ed.) LITP 1986. LNCS, vol. 316, pp. 82–94. Springer, Heidelberg (1988) CrossRefGoogle Scholar
  10. 10.
    Ollinger, N.: Intrinsically universal cellular automata. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) CSP, pp. 259–266. Cork University Press (2008). doi:10.4204/EPTCS.1.19
  11. 11.
    Ollinger, N.: Intrinsically universal cellular automata. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) CSP, EPTCS 1, pp. 199–204. http://arxiv.org/abs/0906.3213
  12. 12.
    Rosenstiehl, P., Fiksel, J.R., Holliger, A., et al.: Intelligent graphs: networks of finite automata capable of solving graph problems. In: Read, R.C. (Ed.) Graph Theory and Computing, pp. 219–265. Academic Press, Edinburg (1972)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of Nice Sophia Antipolis, I3S-CNRS, UMR 7271Sophia AntipolisFrance

Personalised recommendations