Advertisement

Universality of Graph-controlled Leftist Insertion-deletion Systems with Two States

  • Sergiu Ivanov
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9288)

Abstract

In this article, we consider leftist insertion-deletion systems, in which all rules have contexts on the same side, and may only insert or delete one symbol at a time. We start by introducing extended rules, in which the contexts may be specified as regular expressions, instead of fixed words. We then prove that leftist systems with such extended rules and two-state graph control can simulate any arbitrary 2-tag system. Finally, we show how our construction can be simulated in its turn by graph-controlled leftist insertion-deletion systems with conventional rules of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) (where the first three numbers represent the maximal size of the inserted string and the maximal size of the left and right contexts respectively, while the last three numbers provide the same information about deletion rules), which implies that the latter systems are universal.

Keywords

Regular Expression Expressive Power Communication Graph State Symbol Signal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the support of ANR project SynBioTIC.

References

  1. 1.
    Benne, R.: RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood, Chichester, West Sussex (1993)zbMATHGoogle Scholar
  2. 2.
    Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cocke, J., Minsky, M.: Universality of tag systems with P = 2. J. ACM 11(1), 15–20 (1964)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/deletions with applications to biomolecular computation. In: SPIRE/CRIWG, pp. 47–54 (1999)Google Scholar
  5. 5.
    Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings of the Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, vol. 31 of EPTCS, pp. 88–98 (2010)Google Scholar
  6. 6.
    Galiukschov, B.: Semicontextual grammars. Matematicheskaya Logica i Matematicheskaya Lingvistika, pp. 38–50. Tallin University, Russian (1981)Google Scholar
  7. 7.
    Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages. PhD thesis, University of Colorado at Boulder (1982)Google Scholar
  8. 8.
    Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ivanov, S., Verlan, S.: On the lower bounds for leftist insertion-deletion languages. SubmittedGoogle Scholar
  10. 10.
    Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion systems. CoRR, abs/1112.5947 (2011)Google Scholar
  11. 11.
    Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Kari, L.: On insertion and deletion in formal languages. PhD thesis, University of Turku (1991)Google Scholar
  13. 13.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: characterizing RE using insertion-deletion systems. In: Proceedings of 3rd DIMACS Workshop on DNA Based Computing, pp. 318–333. Philadelphia (1997)Google Scholar
  14. 14.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton, NJ (1956)Google Scholar
  16. 16.
    Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems. PhD thesis, Departament de Filologies Romániques, Universitat Rovira and Virgili (2011)Google Scholar
  17. 17.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion systems with one-sided contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion deletion (P) systems with rules of size two. Nat. Comput. 10(2), 835–852 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 14, 1525–1534 (1969)zbMATHGoogle Scholar
  20. 20.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood Cliffts, NJ (1967)zbMATHGoogle Scholar
  23. 23.
    Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456, 80–88 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell, MA, USA (1997)CrossRefGoogle Scholar
  25. 25.
    Păun, G., My, N.X.: On the inner contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 25, 641–651 (1980)zbMATHGoogle Scholar
  26. 26.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  27. 27.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-Verlag, Berlin (1997)zbMATHGoogle Scholar
  28. 28.
    Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA8 Sapporo. LNCS, vol. 2568, pp. 269–280. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  29. 29.
    Verlan, S.: On minimal context-free insertion-deletion systems. J. Automata, Languages Comb. 12(1–2), 317–328 (2007)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, Université Paris Est (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est – Créteil Val de MarneCréteilFrance
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations