International Conference on Machines, Computations, and Universality

MCU 2015: Machines, Computations, and Universality pp 79-93 | Cite as

Universality of Graph-controlled Leftist Insertion-deletion Systems with Two States

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9288)


In this article, we consider leftist insertion-deletion systems, in which all rules have contexts on the same side, and may only insert or delete one symbol at a time. We start by introducing extended rules, in which the contexts may be specified as regular expressions, instead of fixed words. We then prove that leftist systems with such extended rules and two-state graph control can simulate any arbitrary 2-tag system. Finally, we show how our construction can be simulated in its turn by graph-controlled leftist insertion-deletion systems with conventional rules of sizes (1, 1, 0; 1, 2, 0) and (1, 2, 0; 1, 1, 0) (where the first three numbers represent the maximal size of the inserted string and the maximal size of the left and right contexts respectively, while the last three numbers provide the same information about deletion rules), which implies that the latter systems are universal.



The authors would like to acknowledge the support of ANR project SynBioTIC.


  1. 1.
    Benne, R.: RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood, Chichester, West Sussex (1993)MATHGoogle Scholar
  2. 2.
    Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cocke, J., Minsky, M.: Universality of tag systems with P = 2. J. ACM 11(1), 15–20 (1964)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/deletions with applications to biomolecular computation. In: SPIRE/CRIWG, pp. 47–54 (1999)Google Scholar
  5. 5.
    Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings of the Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, vol. 31 of EPTCS, pp. 88–98 (2010)Google Scholar
  6. 6.
    Galiukschov, B.: Semicontextual grammars. Matematicheskaya Logica i Matematicheskaya Lingvistika, pp. 38–50. Tallin University, Russian (1981)Google Scholar
  7. 7.
    Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages. PhD thesis, University of Colorado at Boulder (1982)Google Scholar
  8. 8.
    Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ivanov, S., Verlan, S.: On the lower bounds for leftist insertion-deletion languages. SubmittedGoogle Scholar
  10. 10.
    Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion systems. CoRR, abs/1112.5947 (2011)Google Scholar
  11. 11.
    Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Kari, L.: On insertion and deletion in formal languages. PhD thesis, University of Turku (1991)Google Scholar
  13. 13.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: characterizing RE using insertion-deletion systems. In: Proceedings of 3rd DIMACS Workshop on DNA Based Computing, pp. 318–333. Philadelphia (1997)Google Scholar
  14. 14.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton, NJ (1956)Google Scholar
  16. 16.
    Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems. PhD thesis, Departament de Filologies Romániques, Universitat Rovira and Virgili (2011)Google Scholar
  17. 17.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion systems with one-sided contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion deletion (P) systems with rules of size two. Nat. Comput. 10(2), 835–852 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marcus, S.: Contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 14, 1525–1534 (1969)MATHGoogle Scholar
  20. 20.
    Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood Cliffts, NJ (1967)MATHGoogle Scholar
  23. 23.
    Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456, 80–88 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell, MA, USA (1997)CrossRefGoogle Scholar
  25. 25.
    Păun, G., My, N.X.: On the inner contextual grammars. Revue Roumaine de Mathématiques Pures et Appliquées 25, 641–651 (1980)MATHGoogle Scholar
  26. 26.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  27. 27.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer-Verlag, Berlin (1997)MATHGoogle Scholar
  28. 28.
    Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA8 Sapporo. LNCS, vol. 2568, pp. 269–280. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  29. 29.
    Verlan, S.: On minimal context-free insertion-deletion systems. J. Automata, Languages Comb. 12(1–2), 317–328 (2007)MathSciNetMATHGoogle Scholar
  30. 30.
    Verlan, S.: Study of language-theoretic computational paradigms inspired by biology. Habilitation thesis, Université Paris Est (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est – Créteil Val de MarneCréteilFrance
  2. 2.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChisinauMoldova

Personalised recommendations