Universality in Infinite Petri Nets

  • Dmitry A. ZaitsevEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9288)


Finite classical Petri nets are non-Turing-complete. Two infinite Petri nets are constructed which simulate the linear cellular automaton Rule 110 via expanding traversals of the cell array. One net is obtained via direct simulation of the cellular automaton while the other net simulates a Turing machine, which simulates the cellular automaton. They use cell models of 21 and 14 nodes, respectively, and simulate the cellular automaton in polynomial time. Based on known results we conclude that these Petri nets are Turing-complete and run in polynomial time. We employ an induction proof technique that is applicable for the formal proof of Rule 110 ether and gliders properties further to the constructs presented by Matthew Cook.


Universal Petri net Infinite Petri net Linear cellular automaton Turing machine Simulation Complexity 



The author would like to thank reviewers whose comments allowed the refinement of the presentation and Jacob Hendricks for his help in improving the readability of the paper.


  1. 1.
    Agerwala, T.: A complete model for representing the coordination of asynchronous processes, John Hopkins University, Hopkins Computer Science Program, Baltimore, MD, Research Report no. 32, July 1974Google Scholar
  2. 2.
    Berthomieu, B., Ribet, O.-P., Vernadat, F.: The tool TINA-construction of abstract state space for Petri nets and time Petri nets. Int. J. Prod. Res. 42(14), 2741–2756 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Burkhard, H.-D.: On priorities of parallelism: Petri nets under the maximum firing strategy. In: Salwicki, A. (ed.) Logics of Programs and Their Applications. LNCS, vol. 148, pp. 86–97. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  4. 4.
    Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004). Google Scholar
  5. 5.
    Cook, M.: A Concrete View of Rule 110 Computation. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) The Complexity of Simple Programs 2008, EPTCS 1, pp. 31–55 (2009). doi: 10.4204/EPTCS.1.4
  6. 6.
    Esparza, J.: Decidability and complexity of PN problems. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  7. 7.
    Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and counter languages. Math. Syst. Theory 2(3), 265–283 (1968). MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ivanov, S., Pelz, E., Verlan, S.: Small Universal Petri Nets with Inhibitor Arcs. In: Computability in Europe, pp. 23–27, Budapest, Hungary, June 2014. (
  9. 9.
    Korec, I.: Small universal register machines. Theoret. Comput. Sci. 168(2), 267–301 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kotov, V.E.: Seti Petri. Nauka, Moscow (1984)Google Scholar
  11. 11.
    Neary, T.: Small universal Turing machines. PhD thesis, Department of Computer Science, National University of Ireland, Maynooth (2008)Google Scholar
  12. 12.
    Neary, T., Woods, D.: Small weakly universal turing machines. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273. Springer, Heidelberg (2009).\(\sim \)tneary/NearyWoods\_FCT2009.pdf CrossRefGoogle Scholar
  13. 13.
    Neary, T.: On the computational complexity of spiking neural P systems. Nat. Comput. 9(4), 831–851 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part i. Theoretical Computer Science 13, 85–108 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Peterson, J.: A note on colored petri nets. Inf. Proces. Lett. 11(1), 40–43 (1980)CrossRefzbMATHGoogle Scholar
  16. 16.
    Peterson, J.: Petri Net Theory and the Modelling of Systems, Prentice-Hall (1981)Google Scholar
  17. 17.
    Petri, C.: Kommunikation mit Automaten. Bonn: Institut fur Instrumentelle Mathematik, Schriften des IIM, Nr. 2 (1962)Google Scholar
  18. 18.
    Smith, E.: Principles of high-level net theory. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 174–210. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  19. 19.
    Winkowski, J.: Reachability in contextual nets. In: Fundamenta Informaticae - Concurrency Specification and Programming Workshop (CSP 2001), vol. 51(1–2), pp. 235–250 (2002)Google Scholar
  20. 20.
    Zaitsev, D.A., Sleptsov, A.I.: State equations and equivalent transformations for timed petri nets. Cybern. Syst. Anal. 33(5), 659–672 (1997). doi: 10.1007/BF02667189 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zaitsev, D.A.: A Small universal Petri net. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and Universality 2013 (MCU 2013), Zurich, Switzerland, September 9–11, Electronic Proceedings in Theoretical Computer Science 128, 190–202 (2013). doi: 10.4204/EPTCS.128.22
  22. 22.
    Zaitsev, D.A.: Small polynomial time universal petri nets, September 2013. arXiv:1309.7288
  23. 23.
    Zaitsev D.A., Zaitsev I.D., Shmeleva T.R.: Infinite Petri Nets as Models of Grids. In: Khosrow-Pour, M. (ed.) Encyclopedia of Information Science and Technology, 3rd edn., vol. 10, Chap. 19, pp. 187–204. IGI-Global USA (2014)Google Scholar
  24. 24.
    Zaitsev, D.A.: Simulating cellular automata by infinite synchronous Petri nets. In: 21st Annual International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2015) Exploratory papers, vol. 24, pp. 91–100. TUCS Lecture Notes, Turku, Finland, 8–10 June 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Computer ScienceVistula UniversityWarsawPoland

Personalised recommendations