Scalable Design of Logic Circuits Using an Active Molecular Spider System

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9303)


As spatial locality leads to advantages of computation speed-up and sequence reuse in molecular computing, molecular walkers that exhibit localized reactions are of interest for implementing logic computations. We use molecular spiders, which are a type of molecular walkers, to implement logic circuits. We develop an extended multi-spider model with a dynamic environment where signal transmission is triggered locally, and use this model to implement three basic gates (AND, OR, NOT) and a mechanism to cascade the gates. We use a kinetic Monte Carlo algorithm to simulate gate computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity.


Molecular spiders Logic circuits Parallel evaluation Localized signal transmission 


  1. 1.
    Antal, T., Krapivsky, P.L.: Molecular spiders with memory. Phys. Rev. E 76(2), 021121 (2007)CrossRefGoogle Scholar
  2. 2.
    Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Localized hybridization circuits. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 64–83. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA Walker circuits: computational potential, design, and verification. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., et al.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)CrossRefGoogle Scholar
  5. 5.
    Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. ACM SIGARCH Comput. Architect. News 41, 177–188 (2013). ACMCrossRefGoogle Scholar
  6. 6.
    Padilla, J.E., Liu, W., Seeman, N.C.: Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced tile assembly model. Nat. Comput. 11(2), 323–338 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. J. Am. Chem. Soc. 128(39), 12693–12699 (2006)CrossRefGoogle Scholar
  8. 8.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  9. 9.
    Samii, L., Blab, G.A., Bromley, E.H.C., Linke, H., Curmi, P.M.G., Zuckermann, M.J., Forde, N.R.: Time-dependent motor properties of multipedal molecular spiders. Phys. Rev. E 84, 031111 (2011)CrossRefGoogle Scholar
  10. 10.
    Semenov, O., Mohr, D., Stefanovic, D.: First-passage properties of molecular spiders. Phys. Rev. E 88(1), 012724 (2013)CrossRefGoogle Scholar
  11. 11.
    Semenov, O., Olah, M.J., Stefanovic, D.: Mechanism of diffusive transport in molecular spider models. Phys. Rev. E 83(2), 021117 (2011)CrossRefGoogle Scholar
  12. 12.
    Semenov, O., Olah, M.J., Stefanovic, D.: Multiple molecular spiders with a single localized source—the one-dimensional case. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 204–216. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Wickham, S.F., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.J.: A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7(3), 169–173 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dandan Mo
    • 1
  • Matthew R. Lakin
    • 1
    • 2
    • 3
  • Darko Stefanovic
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueUSA
  3. 3.Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations