Advertisement

Biocontrol of Plant Parasitic Nematodes by Fungi: Efficacy and Control Strategies

  • Mohd. Sayeed AkhtarEmail author
  • Jitendra Panwar
  • Siti Nor Akmar Abdullah
  • Yasmeen Siddiqui
  • Mallappa Kumara Swamy
  • Sadegh Ashkani
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 46)

Abstract

Increasing knowledge and growing concern about the elevated cost of inorganic fertilizers or chemical pesticides with their vast applications on various crop plants has raised interest in the alternative method of plant disease protection caused by plant parasitic nematodes. These alternative methods are not only cost-effective but also eco-friendly to the environment and human health. Among the various rhizospheric microorganisms, opportunistic fungi like Paecilomyces lilacinus, Pochonia chlamydosporia, and arbuscular mycorrhizal (AM) fungi have the potential to reduce the severity of diseases caused by plant parasitic nematodes and also improved the plant growth and biomass production. This chapter provides an overview on the biocontrol potential of opportunistic as well as AM fungi on the growth and development of various crop plants. The details about the interactions between these fungi and plant parasitic nematodes have been discussed. An overview of the recent cost-effective technologies used for the mass propagation of these beneficial rhizospheric microorganisms is also discussed.

Keywords

AMAMArbuscular Mycorrhizal Biocontrol Agent Plant Parasitic Nematode Fungal Inoculum Barley Grain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abd-El-Khair H, El-Nagdi WMA (2014) Field application of biocontrol agents for controlling fungal root rot and root-knot nematode in potato. Arch Phytopathol Plant Protect 47:1218–1230CrossRefGoogle Scholar
  2. Akhtar M (1997) Current options in integrated management of plant-parasitic nematodes. Integr Pest Manag Rev 2:187–197CrossRefGoogle Scholar
  3. Akhtar MS (2011) Biocontrol of root-rot disease complex of chickpea by arbuscular mycorrhizal fungi and other phosphate solubilizing microorganisms. Lambert Academic, SaarbrückenGoogle Scholar
  4. Akhtar MS, Abdullah SNA (2014) Mass production techniques of arbuscular mycorrhizal fungi: major advantages and disadvantages: a review. Biosci Biotechnol Res Asia 11:1199–1204CrossRefGoogle Scholar
  5. Akhtar MS, Panwar J (2011) Arbuscular mycorrhizal fungi and opportunistic fungi: efficient root symbionts for the management of plant parasitic nematodes. Adv Sci Eng Med 3:165–175CrossRefGoogle Scholar
  6. Akhtar MS, Panwar J (2013) Efficacy of root-associated fungi and the growth of Pisum sativum (Arkil) and reproduction of root-knot nematode Meloidogyne incognita. J Basic Microbiol 53:318–326PubMedCrossRefGoogle Scholar
  7. Akhtar MS, Siddiqui ZA (2006) Effects of phosphate solubilizing microorganisms on the growth and root-rot disease complex of chickpea. Mycol Phytopathol 40:246–254Google Scholar
  8. Akhtar MS, Siddiqui ZA (2007) Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Aust Plant Pathol 36:175–180CrossRefGoogle Scholar
  9. Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–98CrossRefGoogle Scholar
  10. Akhtar MS, Siddiqui ZA (2009) Effects of phosphate solubilizing microorganisms and Rhizobium sp. on the growth, nodulation, yield and root-rot disease complex of chickpea under field condition. Afr J Biotechnol 8:3479–3488Google Scholar
  11. Akhtar MS, Siddiqui ZA, Wiemken A (2011) Arbuscular mycorrhizal fungi and Rhizobium to control plant fungal diseases. In: Lichtfouse E (ed) Alternative farming systems, biotechnology, drought stress and ecological fertilisation, vol 6, Sustainable agriculture reviews. Springer, Dordrecht, pp 263–292CrossRefGoogle Scholar
  12. Alphey TJW, Robertson WM, Lyon GD (1988) Rishitin, a natural plant product with nematicidal activity. Rev Nematol 11:399–404Google Scholar
  13. Aminuzzaman FM, Xie HY, Duan WJ, Sun BD, Liu XZ (2013) Isolation of nematophagous fungi from eggs and females of Meloidogyne spp. and evaluation of their biological control potential. Biocontrol Sci Technol 23:170–182CrossRefGoogle Scholar
  14. Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA, Gowen SR (2008) The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot. Crop Prot 27:352–361CrossRefGoogle Scholar
  15. Anjos ECT, Cavalcante UMT, Gonçalves DMC, Pedrosa EMR, dos Santos VF, Maia LC (2010) Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passiflora alata). Braz Arch Biol Technol 53:801–809CrossRefGoogle Scholar
  16. Anke H (2010) Insecticidal and nematicidal metabolites from fungi. In: Hotrichter M (ed) The mycota: industrial applications, 2nd edn. Springer, BerlinGoogle Scholar
  17. Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BK (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264PubMedCrossRefGoogle Scholar
  18. Azam T, Akhtar MS, Hisamuddin A (2013) Histological interactions of Paecilomyces lilacinus with root-knot nematode Meloidogyne incognita and their effect on the growth of tomato. Adv Sci Eng 5:335–341CrossRefGoogle Scholar
  19. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefGoogle Scholar
  20. Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205PubMedCrossRefGoogle Scholar
  21. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11CrossRefGoogle Scholar
  22. Bordallo JJ, Lopez-Llorca LV, Jansson HB, Salinas J, Persmark L, Asensio L (2002) Effects of egg-parasitic and nematode-trapping fungi on plant roots. New Phytol 154:491–499CrossRefGoogle Scholar
  23. Bowers JH, Nameth ST, Riedal RM, Rowe RC (1996) Infection sand colonization of potato roots by Verticillium dahliae as infected by Pratylenchus penetrans and P. crenatus. Phytopathology 86:614–621CrossRefGoogle Scholar
  24. Brand D, Soccol CR, Sabu A, Roussos S (2010) Production of fungal biological control agents through solid state fermentation: a case study on Paecilomyces lilacinus against root-knot nematodes. Micol Apl Int 22:31–48Google Scholar
  25. Carneiro RMDG, Hidalgo-Díaz L, Martins I, de Souza Silva KFA, de Sousa MG, Tigano MS (2011) Effect of nematophagous fungi on reproduction of Meloidogyne enterolobii on guava (Psidium guajava) plants. Nematology 13:721–728CrossRefGoogle Scholar
  26. Chabot S, Becard G, Piche Y (1992) Life cycle of Glomus intraradices in root organ culture. Mycologia 84:315–321CrossRefGoogle Scholar
  27. Crump DH, Irving F (1992) Selection of isolates and methods of culturing Verticillium chlamydosporium and its efficacy as a biocontrol agent of beet and potato cyst nematodes. Nematologica 38:367–374CrossRefGoogle Scholar
  28. Dallemole-Giaretta R, Freitas LG, Lopes EA, Pereira OL, Zooca RJF, Ferrazb S (2012) Screening of Pochonia chlamydosporia Brazilian isolates as biocontrol agents of Meloidogyne javanica. Crop Prot 42:102–107CrossRefGoogle Scholar
  29. de Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Rev Nematol 14:157–164Google Scholar
  30. Dhawan SC, Singh S (2009) Compatibility of Pochonia chlamydosporia with nematicide and neem cake against root-knot nematode, Meloidogyne incognita infesting okra. Indian J Nematol 39:85–89Google Scholar
  31. Dhawan SC, Singh S (2011) Biomanagement of root-knot nematode, Meloidogyne incognita by egg parasitic fungus, (Pochonia chlamydosporia) on okra. Veg Sci 38:128–134Google Scholar
  32. Douds DDJ (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 12:163–167PubMedCrossRefGoogle Scholar
  33. El-Shanshoury AR, El-Sayed SA, Mahmoud YAG, Khalefa DM (2005) Evaluation of Pochonia chlamydosporia, Paecilomyces lilacinus and Arthrobotrys dactyloide as biocontrol agents for Meloidogyne incognita under greenhouse condition. Pak J Biol Sci 8:1511–1516CrossRefGoogle Scholar
  34. Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57:33–42CrossRefGoogle Scholar
  35. Esfahani MN, Pour BA (2006) The effect of Paecilomyces lilacinus on the pathogenesis of Meloidogyne javanica and tomato plant growth parameters. Iran Agric Res 24:67–76Google Scholar
  36. Esteves I, Peteira B, Atkins SD, Magan N, Kerry BR (2009a) Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycol Res 113:867–876PubMedCrossRefGoogle Scholar
  37. Esteves I, Peteira B, Powers S, Magan N, Kerry B (2009b) Effects of osmotic and matric potential on growth and accumulation of endogenous reserves in three isolates of Pochonia chlamydosporia. Biocontrol Sci Technol 19:185–199CrossRefGoogle Scholar
  38. Ganaie MA, Khan T (2010) Biocontrol potential of Paecilomyces lilacinus on pathogenesis of Meloidogyne javanica infecting tomato plant. Eur J Appl Sci 2:80–84Google Scholar
  39. Giri B, Giang PH, Kumari RAP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and function. In: Buscot F, Varma A (eds) Microorganisms in soil: roles in genesis and function, vol 3, Soil biology. Springer, BerlinGoogle Scholar
  40. Goswami BK, Pandey RK, Rathour KS, Bhattacharya C, Singh L (2006) Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants. J Zhej Uni Sci 7:873–875CrossRefGoogle Scholar
  41. Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186–188Google Scholar
  42. Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 11. Springer, Dordrecht, pp 183–221CrossRefGoogle Scholar
  43. Hildalgo-Diaz L, Kerry BR (2008) Integrated management and biocontrol of vegetable and grain crops nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 29–49Google Scholar
  44. Holland RJ, Williams KL, Khan A (1999) Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1:131–139CrossRefGoogle Scholar
  45. Holland RJ, Williams KL, Nevalainen KMH (2003) Paecilomyces lilacinus strain Bioact251 is not a plant endophyte. Aust Plant Pathol 32:473–478CrossRefGoogle Scholar
  46. Jaizme-Vega MC, Rodríguez-Romero AS, Barroso Nunez LA (2006) Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant-growth promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61:1–7CrossRefGoogle Scholar
  47. Jalaluddin M, Hajra NB, Firoza K, Shahina F (2008) Effect of Glomus callosum, Meloidogyne incognita and soil moisture on growth and yield of sunflower. Pak J Bot 40:391–396Google Scholar
  48. Jarstfer AG, Sylvia DM (1999) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin, pp 427–441CrossRefGoogle Scholar
  49. Jatala P (1986) Biological control of plant parasitic nematodes. Annu Rev Phytopathol 24:453–489CrossRefGoogle Scholar
  50. Kannan R, Veeravel R (2008) Effect of an ovi-parasitic fungus Paecilomyces lilacinus Samson on Meloidogyne incognita in tomato. Ann Plant Prot Sci 16:466–470Google Scholar
  51. Kannan R, Veeravel R (2012) Effect of different dose and application methods of Paecilomyces lilacinus (Thom.) Samson against root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in okra. J Agric Sci 4:119–127Google Scholar
  52. Kantharaju V, Krishnappa K, Ravichardra NG, Karuna K (2005) Management of root-knot nematode, Meloidogyne incognita on tomato by using indigenous isolates of AM fungus, Glomus fasciculatum. Indian J Nematol 35:32–36Google Scholar
  53. Kerry BR, Hirsch PR (2011) Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organisms and molecular scales. In: Davies K, Spiegel Y (eds) Biological control of plant parasitic nematodes building coherence between microbial ecology and molecular mechanisms. Progress in biological control, vol 11. Springer, Dordrecht, pp 71–182Google Scholar
  54. Khalil MS (2013) The potential of five eco-biorational products on the reproduction of root-knot nematode and plant growth. ESci J Plant Pathol 2:4–91Google Scholar
  55. Khalil MSEH, Allam AFG, Barakat AST (2012) Nematicidal activity of some biopesticide agents and microorganisms against root-knot nematode on tomato plants under greenhouse conditions. J Plant Protect Res 50:47–52Google Scholar
  56. Khan MR, Anwer MA (2011) Fungal bioinoculants for plant disease management. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agriculture and environmental applications. Springer, Dordrecht, pp 447–488CrossRefGoogle Scholar
  57. Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Contr 31:346–352CrossRefGoogle Scholar
  58. Khan MR, Khan SM, Mohide F (2005a) Root-knot nematode problem of some winter ornamental plants and its biomanagement. J Nematol 37:198–206PubMedCentralPubMedGoogle Scholar
  59. Khan MR, Mohiddin FA, Khan SM, Khan B (2005b) Effect of seed treatment with certain biopesticides on root-knot of chickpea. Nematol Medit 33:107–112Google Scholar
  60. Kiewnick S, Sikora RA (2006) Biological control of root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Contr 38:179–187CrossRefGoogle Scholar
  61. Kiewnick S, Neumann S, Sikora RA, Frey JE (2011) Effect of Meloidogyne incognita inoculum density and application rate of Paecilomyces lilacinus strain 251 on biocontrol efficacy and colonization of egg masses analyzed by real-time quantitative PCR. Phytopathology 101:105–112PubMedCrossRefGoogle Scholar
  62. Kumar P, Satyajeet Khare S, Dubey RC (2012) Diversity of Bacilli from disease suppressive soil and their role in plant growth promotion and yield enhancement. New York Sci J 5:90–111Google Scholar
  63. Leng P, Zhang Z, Guangtang P, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873Google Scholar
  64. Li GK, Zhang J, Xu JD, Liu Y (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:1–22CrossRefGoogle Scholar
  65. Lopez-Llorca LV, Jansson HB (2007) Fungal parasites of invertebrates: multimodal biocontrol agents. In: Robson GD, van West P, Gadd GM (eds) Exploitation of fungi. Cambridge University Press, Cambridge, pp 310–335CrossRefGoogle Scholar
  66. Lopez-Llorca LV, Macia-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grains crops nematodes. Springer, Dordrecht, pp 51–76Google Scholar
  67. Macia-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009a) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228PubMedCrossRefGoogle Scholar
  68. Macia-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009b) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401CrossRefGoogle Scholar
  69. Manzanilla-Lopez RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, Hidalgo-Diaz L (2013) Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J Nematol 45:1–7PubMedCentralPubMedGoogle Scholar
  70. Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39:213–220PubMedCentralPubMedGoogle Scholar
  71. Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microbial Ecol 48:338–348CrossRefGoogle Scholar
  72. Mishra KK, Dwivedi S, Pandre PK (2014) Evaluation of fungal bio-agents on plant growth and M. incognita infestation on chickpea. Chem Mater Res 6:135–139Google Scholar
  73. Mitchell DJ, Kannwischer-Mitchell ME, Dickson DW (1987) A semi selective medium for the isolation of Paecilomyces lilacinus from soil. J Nematol 19:255–256PubMedCentralPubMedGoogle Scholar
  74. Moosavi MR, Zare R, Zamanizadeh HR, Fatemy S (2010) Pathogenicity of Pochonia species on eggs of Meloidogyne javanica. J Invertebr Pathol 104:125–133PubMedCrossRefGoogle Scholar
  75. Mukhtar T, Hussain MA, Kayani MZ (2013) Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathol Medit 52:66–76Google Scholar
  76. Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi ZT (2011) Current nematodes threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43CrossRefGoogle Scholar
  77. Oclarit EL, Cumagun CJR (2009) Evaluation of efficacy of Paecilomyces lilacinus as biological control agent of Meloidogyne incognita attacking tomato. J Plant Protect Res 49:337–340CrossRefGoogle Scholar
  78. Odeyemi IS, Afolami SO, Sosanya OS (2010) Effect of Glomus mosseae (arbuscular mycorrhizal fungus) on host-parasite relationship of Meloidogyne incognita (Southern root-knot nematode) on four improved cowpea varieties. J Plant Protect Res 50:320–325CrossRefGoogle Scholar
  79. Odeyemi IS, Afolamia SO, Adekoyejoa AB (2013) Integration of Glomus mosseae with Chromolaena odorata powder for suppression of Meloidogyne incognita on maize (Zea mays L.). Arch Phytopathol Plant Protect 46:1589–1597CrossRefGoogle Scholar
  80. Oka Y, Koltai H, Bar-Eyal M, Mor M, Sharon E, Chet I, Spiegel Y (2000) New strategies for the control of plant-parasitic nematodes. Pest Manag Sci 56:983–988CrossRefGoogle Scholar
  81. Palomares-Rius JE, Kikuchi T (2013) Omics fields of study related to plant-parasitic nematodes. J Integr Omics 3:1–10CrossRefGoogle Scholar
  82. Pandey R (2005) Field application of bio-organics in the management of Meloidogyne incognita in Mentha arvensis. Nematol Medit 33:51–54Google Scholar
  83. Panwar J, Tarafdar JC, Yadav RS, Saini VK, Aseri GK, Vyas A (2007) Technique for visual demonstration of germinating AM spore and their multiplication in pots. J Plant Nutri Soil Sci 170:659–663CrossRefGoogle Scholar
  84. Park JO, Hargreaves JR, McConville EJ, Stirling GR, Ghisalberti EL, Sivasithamparam K (2004) Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett Appl Microbiol 38:271–276PubMedCrossRefGoogle Scholar
  85. Pau CG, Leong CTS, Wong SK, Eng L, Jiwan M, Kundat FR, Aziz ZFBA, Ahmed OH, Majid NM (2012) Isolation of indigenous strains of Paecilomyces lilacinus with antagonistic activity against Meloidogyne incognita. Int J Agric Biol 14:197–203Google Scholar
  86. Podestá GS, Freitas LG, Dallemole-Giaretta R, Zooca RJF, Caixeta LB, Ferraz S (2013) Meloidogyne javanica control by Pochonia chlamydosporia, Gracilibacillus dipsosauri and soil conditioner in tomato. Summa Phytopathol 39:122–125CrossRefGoogle Scholar
  87. Prabhu S, Kumar S, Subramanian S (2008) Mass production and commercial formulation of Paecilomyces lilacinus. Madra Agric J 95:415–417Google Scholar
  88. Prakob W, Nguen-Hom J, Jaimasit P, Silapapongpri S, Thanunchai J, Chaisuk P (2009) Biological control of lettuce root-knot disease by the used of Pseudomonas aeruginosa, Bacillus subtilis and Paecilomyces lilacinus. J Agric Technol 5:179–191Google Scholar
  89. Rangaswami G (1972) Disease of crop plants in India. Prentice Hall, New Delhi, p 504Google Scholar
  90. Rao MS, Sowmya DS, Chaya MK, Kumar RM, Rathnamma K, Gavaskar J, Priti K, Ramachandran N (2012) Management of nematode induced wilt disease complex in capsicum using Pseudomonas fluorescens and Paecilomyces lilacinus. Nematol Medit 40:101–105Google Scholar
  91. Ravindra H, Sehgal M, Pawan AS, Archana BS, Shruti SA, Narasimhamurty HB (2014) Eco-friendly management of root-knot nematodes using acacia compost and bioagents in brinjal. Pak J Nematol 32:33–38Google Scholar
  92. Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895PubMedCrossRefGoogle Scholar
  93. Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the root-knot nematode Meloidogyne incognita on tomato. J Plant Dis Protect 115:108–113Google Scholar
  94. Robl D, Sung LB, Novakovich JH, Marangoni PRD, Zawadneak MAC, Dalzoto PR, Gabardo J, Pimentel IC (2009) Spore production in Paecilomyces lilacinus (Thom.) Samson strains on agro-industrial residues. Braz J Microbiol 40:296–300PubMedCentralPubMedCrossRefGoogle Scholar
  95. Rodríguez Romero AS, Jaizme-Vega MC (2005) Effect of the arbuscular mycorrhizal fungus Glomus manihotis on the root-knot nematode, Meloidogyne javanica in banana. Nematol Medit 33:217–221Google Scholar
  96. Rumbos C, Reimann S, Kiewnick S, Sikora RA (2006) Interactions of Paecilomyces lilacinus strain 251 with the mycorrhizal fungus Glomus intraradices: implications for Meloidogyne incognita control on tomato. Biocontrol Sci Technol 16:981–986CrossRefGoogle Scholar
  97. Samson RA (1974) Paecilomyces and some allied Hyphomycetes. Study Mycol 6:1–119Google Scholar
  98. Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists, Hyattsville, pp 7–14Google Scholar
  99. Schüßler A (2008) Glomeromycota species list. http://www.lrz-muenchen.de/~schuessler/amphylo/. Assessed on June 2014
  100. Serfoji P, Smithra P, Saravanan K, Durai Raj K (2013) Management of Meloidogyne incognita on tobacco through Glomus aggregatum and oil cakes. Int J Pharma Biol Arch 4:451–454Google Scholar
  101. Sharf R, Shiekh H, Abbasi S, Akhtar A, Robab MI (2014) Interaction between Meloidogyne incognita and Pochonia chlamydosporia and their effects on the growth of Phaseolus vulgaris. Arch Phytopathol Protect 47:622–630CrossRefGoogle Scholar
  102. Sharma P, Pandey R (2009) Biological control of root-knot nematode; Meloidogyne incognita in the medicinal plant; Withania somnifera and the effect of biocontrol agents on plant growth. Afr J Agric Res 4:564–567Google Scholar
  103. Shreenivasa KR, Krishnappa K, Ravichandra NG (2007) Interaction effects of arbuscular mycorrhizal fungus Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on growth and phosphorous uptake of tomato. Karn J Agric Sci 20:57–61Google Scholar
  104. Siddiqui ZA, Akhtar MS (2007) Effects of AM fungi and organic fertilizers on the reproduction of the nematode Meloidogyne incognita and on the growth and water loss of tomato. Biol Fertil Soils 43:603–609CrossRefGoogle Scholar
  105. Siddiqui ZA, Akhtar MS (2008a) Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocontrol Sci Technol 18:279–290CrossRefGoogle Scholar
  106. Siddiqui ZA, Akhtar MS (2008b) Effects of fertilizers, AM fungus and plant growth promoting rhizobacterium on the growth of tomato and on the reproduction of root-knot nematode Meloidogyne incognita. J Plant Inter 3:263–271Google Scholar
  107. Siddiqui ZA, Akhtar MS (2009a) Effect of plant growth promoting rhizobacteria, nematode parasitic fungi and root-nodule bacterium on root-knot nematodes Meloidogyne javanica and growth of chickpea. Biocontrol Sci Technol 19:511–521CrossRefGoogle Scholar
  108. Siddiqui ZA, Akhtar MS (2009b) Effects of antagonistic fungi and plant growth-promoting rhizobacteria on growth of tomato and reproduction of the root-knot nematode, Meloidogyne incognita. Aust Plant Pathol 38:22–28CrossRefGoogle Scholar
  109. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  110. Soliman AS, Shawky SM, Omar MNA (2011) Efficiency of bioagents in controlling root-knot nematode on Acacia plants in Egypt. American-Eurasian J Agric Environ Sci 10:223–229Google Scholar
  111. Sundararaju P, Kiruthika P (2009) Effect of biocontrol agent, Paecilomyces lilacinus along with neemcake and botanicals for the management of Meloidogyne incognita on banana. Indian J Nematol 39:201–206Google Scholar
  112. Tahseen Q, Clark IM, Atkins SD, Hirsch PR, Kerry BR (2005) Impact of the nematophagous fungus Pochonia chlamydosporia on nematode and microbial populations. Commun Agric Appl Biol Sci 70:81–86PubMedGoogle Scholar
  113. Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fun Gen Biol 35:67–78CrossRefGoogle Scholar
  114. Timper P (2011) Utilization of biological control for managing plant-parasitic nematodes. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, New York, pp 259–289CrossRefGoogle Scholar
  115. Udo IA, Uguru MI, Ogbuji RO (2013) Pathogenicity of Meloidogyne incognita race 1 on tomato as influenced by different arbuscular mycorrhizal fungi and bioformulated Paecilomyces lilacinus in a dysteric cambisol soil. J Plant Protect Res 53:71–78CrossRefGoogle Scholar
  116. Usman A, Siddiqui MA (2012) Effect of some fungal strains for the management of root-knot nematode (Meloidogyne incognita) on eggplant (Solanum melongena). J Agric Technol 8:213–218Google Scholar
  117. van Damme V, Hoedekie A, Viaene N (2005) Long-term efficacy of Pochonia chlamydosporia for the management of Meloidogyne javanica for glasshouse crops. Nematology 7:727–736CrossRefGoogle Scholar
  118. Viggiano JR, de Freitas LG, Lopes EA (2014) Use of Pochonia chlamydosporia to control Meloidogyne javanica in cucumber. Biol Control 69:72–77CrossRefGoogle Scholar
  119. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De la Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20PubMedCrossRefGoogle Scholar
  120. Yadav K, Akhtar MS, Panwar J (2015) Rhizospheric plant microbe interactions: key factor to soil fertility and plant nutrition. In: Arora NK (ed) Plant microbe symbiosis: applied facets. Springer, India, pp 127–145Google Scholar
  121. Yang J, Tian B, Liang L, Zhang K (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31PubMedCrossRefGoogle Scholar
  122. Yang J, Loffredo A, Borneman J, Becker JO (2012) Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. J Nematol 44:67–71PubMedCentralPubMedGoogle Scholar
  123. Zare R, Gams W (2004) A monograph of Verticillium section Prostrata. Rostaniha 3:1–188Google Scholar
  124. Zhang L, Zhang J, Christie P, Li X (2008) Pre-inoculation with arbuscular mycorrhizal fungi suppresses root knot nematode (Meloidogyne incognita) on cucumber (Cucumis sativus). Biol Fertil Soils 45:205–211CrossRefGoogle Scholar
  125. Zhang L, Zhang J, Christie P, Li X (2009) Effect of inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the root-knot nematode Meloidogyne incognita in cucumber. J Plant Nutr 32:967–979CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mohd. Sayeed Akhtar
    • 1
    Email author
  • Jitendra Panwar
    • 2
  • Siti Nor Akmar Abdullah
    • 1
  • Yasmeen Siddiqui
    • 3
  • Mallappa Kumara Swamy
    • 4
  • Sadegh Ashkani
    • 5
  1. 1.Laboratory of Plantation CropsInstitute of Tropical Agriculture, Universiti Putra Malaysia (UPM)Serdang, SelangorMalaysia
  2. 2.Department of Biological SciencesBirla Institute of Technology and Science, Centre for BiotechnologyPilaniIndia
  3. 3.Laboratory of Food CropsInstitute of Tropical Agriculture, Universiti Putra Malaysia (UPM)Serdang, SelangorMalaysia
  4. 4.Faculty of Agriculture, Department of Crop ScienceUniversiti Putra Malaysia (UPM)Serdang, SelangorMalaysia
  5. 5.Department of Agronomy and Plant BreedingYadegar-e-Imam Khomeini RAH Shahre-Rey Branch, Islamic Azad UniversityTehranIran

Personalised recommendations