Ensuring Model Consistency in Declarative Process Discovery

  • Claudio Di Ciccio
  • Fabrizio Maria Maggi
  • Marco Montali
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)

Abstract

Declarative process models define the behaviour of business processes as a set of constraints. Declarative process discovery aims at inferring such constraints from event logs. Existing discovery techniques verify the satisfaction of candidate constraints over the log, but completely neglect their interactions. As a result, the inferred constraints can be mutually contradicting and their interplay may lead to an inconsistent process model that does not accept any trace. In such a case, the output turns out to be unusable for enactment, simulation or verification purposes. In addition, the discovered model contains, in general, redundancies that are due to complex interactions of several constraints and that cannot be solved using existing pruning approaches. We address these problems by proposing a technique that automatically resolves conflicts within the discovered models and is more powerful than existing pruning techniques to eliminate redundancies. First, we formally define the problems of constraint redundancy and conflict resolution. Thereafter, we introduce techniques based on the notion of an automata-product monoid that guarantee the consistency of the discovered models and, at the same time, keep the most interesting constraints in the pruned set. We evaluate the devised techniques on real-world benchmarks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  2. 2.
    Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic declarative process mining. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 292–303. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  3. 3.
    Bellodi, E., Riguzzi, F., Lamma, E.: Probabilistic logic-based process mining. In: CILC (2010)Google Scholar
  4. 4.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. T. Petri Nets and Other Models of Concurrency 2, 278–295 (2009)CrossRefGoogle Scholar
  5. 5.
    Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1(2), 91–112 (1958)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovering target-branched declare constraints. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 34–50. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declarative workflows. In: CIDM, pp. 135–142. IEEE (2013)Google Scholar
  8. 8.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manage. Inf. Syst. 5(4), 24:1–24:37 (2015)CrossRefGoogle Scholar
  9. 9.
    van Dongen, B.F.: Real-life event logs - a loan application process. BPIC (2012)Google Scholar
  10. 10.
    Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diagnosis of configuration knowledge bases. Artif. Intell. 152(2), 213–234 (2004)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Felfernig, A., Zehentner, C., Blazek, P.: Corediag: eliminating redundancy in constraint sets. In: DX, pp. 219–224 (2011)Google Scholar
  12. 12.
    Gisburg, S., Rose, G.F.: Preservation of languages by transducers. Information and Control 9(2), 153–176 (1966)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: AAAI, pp. 167–172 (2004)Google Scholar
  14. 14.
    Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A knowledge-based integrated approach for discovering and repairing declare maps. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: CIDM, pp. 192–199 (2011)Google Scholar
  18. 18.
    Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative models. In: SIMPDA, vol. 1293, pp. 162–173. CEUR-WS.org (2014)Google Scholar
  19. 19.
    Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling–an academic dream or the future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 307–322. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a log-based strengthening of declarative compliance models. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 327–342. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Trans. Software Eng. 37(3), 410–429 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)CrossRefGoogle Scholar
  23. 23.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Min. Knowl. Discov. 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claudio Di Ciccio
    • 1
  • Fabrizio Maria Maggi
    • 2
  • Marco Montali
    • 3
  • Jan Mendling
    • 1
  1. 1.Vienna University of Economics and BusinessViennaAustria
  2. 2.University of TartuTartuEstonia
  3. 3.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations