Incorporating Negative Information in Process Discovery

  • Hernan Ponce-de-LeónEmail author
  • Josep Carmona
  • Seppe K. L. M. vanden Broucke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)


The discovery of a formal process model from event logs describing real process executions is a challenging problem that has been studied from several angles. Most of the contributions consider the extraction of a model as a semi-supervised problem where only positive information is available. In this paper we present a fresh look at process discovery where also negative information can be taken into account. This feature may be crucial for deriving process models which are not only simple, fitting and precise, but also good on generalizing the right behavior underlying an event log. The technique is based on numerical abstract domains and Satisfiability Modulo Theories (SMT), and can be combined with any process discovery technique. As an example, we show in detail how to supervise a recent technique that uses numerical abstract domains. Experiments performed in our prototype implementation show the effectiveness of the techniques and the ability to improve the results produced by selected discovery techniques.


Positive Information Negative Information Convex Polyhedron Business Process Management Inductive Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  3. 3.
    Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317 (2011)Google Scholar
  4. 4.
    Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based on learning and planning. International Journal of Cooperative Information Systems 15(4), 485–505 (2006)CrossRefGoogle Scholar
  5. 5.
    Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  6. 6.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. Inductive Logic Programming, 132–146 (2008)Google Scholar
  7. 7.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the sciff framework. ACM Transactions on Computational Logic (TOCL) 9(4), 29 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with Artificial Negative Events. Journal of Machine Learning Research 10, 1305–1340 (2009)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)Google Scholar
  10. 10.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL( t). J. ACM 53(6), 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Carmona, J., Cortadella, J.: Process discovery algorithms using numerical abstract domains. IEEE Trans. Knowl. Data Eng. 26(12), 3064–3076 (2014)CrossRefGoogle Scholar
  12. 12.
    Fukuda, K., Picozzi, S., Avis, D.: On canonical representations of convex polyhedra. In: Proc. of the First International Congress of Mathematical Software, pp. 350–360 (2002)Google Scholar
  13. 13.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  14. 14.
    vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)CrossRefGoogle Scholar
  15. 15.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  16. 16.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri nets. IEEE Trans. Computers 59(3), 371–384 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Business Management 13(1), 37–67 (2015)CrossRefGoogle Scholar
  19. 19.
    Maruster, L., Weijters, A., van der Aalst, W., van den Bosch, A.: A Rule-Based Approach for Process Discovery: Dealing with Noise and Imbalance in Process Logs. Data Mining and Knowledge Discovery 13(1), 67–87 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hernan Ponce-de-León
    • 1
    Email author
  • Josep Carmona
    • 2
  • Seppe K. L. M. vanden Broucke
    • 3
  1. 1.Department of Computer Science and Engineering, School of Science, Helsinki Institute for Information Technology HIITAalto UniversityEspooFinland
  2. 2.Universitat Politecnica de CatalunyaBarcelonaSpain
  3. 3.Department of Decision Sciences and Information Management, Faculty of Economics and BusinessKU LeuvenLeuvenBelgium

Personalised recommendations