Mining Invisible Tasks in Non-free-choice Constructs

  • Qinlong Guo
  • Lijie Wen
  • Jianmin Wang
  • Zhiqiang Yan
  • Philip S. Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)


The discovery of process models from event logs (i.e. process mining) has emerged as one of the crucial challenges for enabling the continuous support in the life-cycle of a process-aware information system. However, in a decade of process discovery research, the relevant algorithms are known to have strong limitations in several dimensions. Invisible task and non-free-choice construct are two important special structures in a process model. Mining invisible tasks involved in non-free-choice constructs is still one significant challenge. In this paper, we propose an algorithm named \(\alpha ^{\$}\). By introducing new ordering relations between tasks, \(\alpha ^{\$}\) is able to solve this problem. \(\alpha ^{\$}\) has been implemented as a plug-in of ProM. The experimental results show that it indeed significantly improves existing process mining techniques.


Process mining Non-free-choice constructs Invisible tasks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther, C.W.: Process mining: a two-step approach to balance between underfitting and overfitting. Software & Systems Modeling 9(1), 87–111 (2010)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.: Workflow mining: A survey of issues and approaches. Data & knowledge engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  3. 3.
    Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-choice constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process models with prime invisible tasks. Data & Knowledge Engineering 69(10), 999–1021 (2010)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda. Computers in industry 53(3), 231–244 (2004)CrossRefGoogle Scholar
  6. 6.
    Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of circuits, systems, and computers 8(01), 21–66 (1998)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  9. 9.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W.E., Weijters, A.J.M.M.T., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  10. 10.
    Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measuring the fit and appropriateness of event logs and process models. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 163–176. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  11. 11.
    Weijters, A.J.M.M., van der Aalst, W.M.P., De Medeiros, A.A.: Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, 166, pp. 1–34 (2006)Google Scholar
  12. 12.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Guo, Q., Wen, L., Wang, J., Ding, Z., Lv, C.: A universal significant reference model set for process mining evaluation framework. In: Ouyang, C., Jung, J.-Y. (eds.) AP-BPM 2014. LNBIP, vol. 181, pp. 16–30. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)Google Scholar
  17. 17.
    Burattin, A., Sperduti, A.: PLG: a framework for the generation of business process models and their execution logs. In: Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 214–219. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Qinlong Guo
    • 1
  • Lijie Wen
    • 1
  • Jianmin Wang
    • 1
  • Zhiqiang Yan
    • 2
  • Philip S. Yu
    • 3
    • 4
  1. 1.School of SoftwareTsinghua UniversityBeijingChina
  2. 2.Information SchoolCapital University of Economics and BusinessBeijingChina
  3. 3.Department of Computer ScienceUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Institue for Data ScienceTsinghua UniversityBeijingChina

Personalised recommendations