BPMN Task Instance Streaming for Efficient Micro-task Crowdsourcing Processes

  • Stefano Tranquillini
  • Florian Daniel
  • Pavel Kucherbaev
  • Fabio Casati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)

Abstract

The Business Process Model and Notation (BPMN) is a standard for modeling and executing business processes with human or machine tasks. The semantics of tasks is usually discrete: a task has exactly one start event and one end event; for multi-instance tasks, all instances must complete before an end event is emitted. We propose a new task type and streaming connector for crowdsourcing able to run hundreds or thousands of micro-task instances in parallel. The two constructs provide for task streaming semantics that is new to BPMN, enable the modeling and efficient enactment of complex crowdsourcing scenarios, and are applicable also beyond the special case of crowdsourcing. We implement the necessary design and runtime support on top of CrowdFlower, demonstrate the viability of the approach via a case study, and report on a set of runtime performance experiments.

Keywords

Crowdsourcing processes Task instance streaming BPMN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment for structured social computing. In: UIST 2011, pp. 53–64 (2011)Google Scholar
  2. 2.
    Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Event stream processing units in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 187–202. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Barowy, D.W., Curtsinger, C., Berger, E.D., McGregor, A.: Automan: a platform for integrating human-based and digital computation. SIGPLAN Not. 47(10), 639–654 (2012)CrossRefGoogle Scholar
  4. 4.
    Bozzon, A., Brambilla, M., Ceri, S., Mauri, A., Volonterio, R.: Pattern-based specification of crowdsourcing applications. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 218–235. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Chilton, L.B., Horton, J.J., Miller, R.C., Azenkot, S.: Task Search in a human computation market. In: HCOMP 2010, pp. 1–9 (2010)Google Scholar
  6. 6.
    Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: Distributed orchestration of user interfaces. Inf. Syst. 37(6), 539–556 (2012)CrossRefGoogle Scholar
  7. 7.
    Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries with crowdsourcing. In: SIGMOD 2011, pp. 61–72 (2011)Google Scholar
  8. 8.
    Howe, J.: Crowdsourcing: why the power of the crowd is driving the future of business, 1st edn. Crown Publishing Group, New York (2008) Google Scholar
  9. 9.
    Kittur, A., Khamkar, S., André, P., Kraut, R.: Crowdweaver: visually managing complex crowd work. In: CSCW 2012, pp. 1033–1036 (2012)Google Scholar
  10. 10.
    Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: Crowdforge: crowdsourcing complex work. In: UIST 2011, pp. 43–52 (2011)Google Scholar
  11. 11.
    Kucherbaev, P., Daniel, F., Tranquillini, S., Marchese, M.: Composite crowdsourcing processes: challenges, approaches, and opportunities. IEEE Internet Computing, conditionally (2015). http://bit.ly/1BtjMTy (accepted)
  12. 12.
    Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with Turkomatic. In: CSCW 2012, pp. 1003–1012 (2012)Google Scholar
  13. 13.
    Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: human computation algorithms on mechanical turk. In: UIST 2010, pp. 57–66 (2010)Google Scholar
  14. 14.
    Minder, P., Bernstein, A.: CrowdLang: a programming language for the systematic exploration of human computation systems. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    O.M.G. (OMG): Business Process Model and Notation (BPMN) version 2.0. (2011). http://www.omg.org/spec/BPMN/2.0
  16. 16.
    Quinn, A.J., Bederson, B.B.: AskSheet: efficient human computation for decision making with spreadsheets. In: CSCW 2012, pp. 1456–1466 (2012)Google Scholar
  17. 17.
    Tranquillini, S., Daniel, F., Kucherbaev, P., Casati, F.: Modeling, Enacting and Integrating Custom Crowdsourcing Processes. ACM Trans. Web 9(2), May 2015Google Scholar
  18. 18.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefano Tranquillini
    • 1
  • Florian Daniel
    • 1
    • 2
  • Pavel Kucherbaev
    • 1
  • Fabio Casati
    • 1
  1. 1.University of Trento – DISIPovoItaly
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations