Advertisement

Context-Sensitive Textual Recommendations for Incomplete Process Model Elements

  • Fabian PittkeEmail author
  • Pedro H. Piccoli Richetti
  • Jan Mendling
  • Fernanda Araujo Baião
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9253)

Abstract

Many organizations manage repositories of several thousand process models. It has been observed that a lot of these models have quality issues. For the model collections we have worked with, we found that every third model contains elements with incomplete element names. While prior research has proposed techniques to close gaps on the structural level, approaches that address the naming of incompletely specified model elements are missing. In this paper, we propose three strategies for naming process elements and a context-sensitive ranking to present the most relevant naming recommendations to the user. We prototypically implemented our approach and conducted an extensive user experiment with real-world process models in order to assess the usefulness of the recommendations. The results show that our approach fulfills its purpose and creates meaningful recommendations.

Keywords

Incompleteness of model elements Context-sensitive recommendations Business process models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinur, J., Hill, J.B.: Magic quadrant for business process management suites. Gartner RAS Core Research Note, 1–24 (2010)Google Scholar
  2. 2.
    Krogstie, J., Sindre, G.: Jørgensen, H.: Process models representing knowledge for action: a revised quality framework. Eur. J. Inf. Syst. 15(1), 91–102 (2006)CrossRefGoogle Scholar
  3. 3.
    Davenport, T.H., Short, J.E.: The new industrial engineering: Information technology and business process redesign. Sloan Mgmt. Review 31(4), 11–27 (1990)Google Scholar
  4. 4.
    Dumas, M., Van der Aalst, W.M., Ter Hofstede, A.H.: Process-aware information systems: bridging people and software through process technology. Wiley (2005)Google Scholar
  5. 5.
    Mendling, J.: Empirical Studies in Process Model Verification. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 208–224. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Mendling, J., Leopold, H., Pittke, F.: 25 challenges of semantic process modeling. Int. Journal of Inf. Systems and Software Eng. for Big Companies 1(1), 78–94 (2015)Google Scholar
  7. 7.
    Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation techniques in business process modeling. Knowledge Eng. and Software Eng., 46–57 (2013)Google Scholar
  8. 8.
    Clever, N., Holler, J., Shitkova, M., Becker, J.: Towards auto-suggested process modeling-prototypical development of an auto-suggest component for process modeling tools. In: EMISA, pp. 133–145 (2013)Google Scholar
  9. 9.
    Koschmider, A., Oberweis, A.: Recommendation-based business processes design. In: Handbook on Business Process Management 1. Springer, pp. 323–336 (2015)Google Scholar
  10. 10.
    Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process Management Journal 12(2), 249–254 (2006)CrossRefGoogle Scholar
  11. 11.
    Leopold, H., Eid-Sabbagh, R.H., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection of naming convention violations in process models for different languages. Decision Support Systems 56, 310–325 (2013)CrossRefGoogle Scholar
  12. 12.
    Leopold, H., Mendling, J., Reijers, H.A., La Rosa, M.: Simplifying process model abstraction: Techniques for generating model names. Inf. Sys. 39, 134–151 (2014)zbMATHCrossRefGoogle Scholar
  13. 13.
    Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative Process Prototyping. Addison-Wesley (1998)Google Scholar
  14. 14.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guidelines (7PMG). Information and Software Technology 52(2), 127–136 (2010)CrossRefGoogle Scholar
  15. 15.
    Mendling, J., Reijers, H.A., Recker, J.: Activity Labeling in Process Modeling: Empirical Insights and Recommendations. Inf. Sys. 35(4), 467–482 (2010)CrossRefGoogle Scholar
  16. 16.
    Gordijn, J., Akkermans, H., van Vliet, H.: Business modelling is not process modelling. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops 2000. LNCS, vol. 1921, pp. 40–51. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  17. 17.
    Barjis, J.: The importance of business process modeling in software systems design. Science of Computer Programming 71(1), 73–87 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    del Olmo, F.H., Gaudioso, E.: Evaluation of recommender systems: A new approach. Expert Systems with Applications 35(3), 790–804 (2008)CrossRefGoogle Scholar
  19. 19.
    Richetti, P.H.P., Baião, F.A., Santoro, F.M.: Declarative process mining: reducing discovered models complexity by pre-processing event logs. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 400–407. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Bracewell, D.B., Russell, S., Wu, A.S.: Identification, expansion, and disambiguation of acronyms in biomedical texts. In: Chen, G., Pan, Y., Guo, M., Lu, J. (eds.) ISPA-WS 2005. LNCS, vol. 3759, pp. 186–195. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  21. 21.
    Lin, D.: An information-theoretic definition of similarity. ICML 98, 296–304 (1998)Google Scholar
  22. 22.
    Piegorsch, W.W.: Sample sizes for improved binomial confidence intervals. Computational Statistics & Data Analysis 46(2), 309–316 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hornung, T., Koschmider, A., Oberweis, A.: A recommender system for business process models. In: Workshop on Information Technologies & Systems (2009)Google Scholar
  24. 24.
    Hornung, T., Koschmider, A., Oberweis, A.: Rule-based autocompletion of business process models. In: CAiSE Forum, vol. 247 (2007)Google Scholar
  25. 25.
    Markovic, I., Pereira, A.C.: Towards a formal framework for reuse in business process modeling. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 484–495. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  26. 26.
    Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling support: method and user experience. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 265–278. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to recommendations in business process modeling. In: AIBP@ AI* IA, pp. 41–50 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fabian Pittke
    • 1
    Email author
  • Pedro H. Piccoli Richetti
    • 2
  • Jan Mendling
    • 1
  • Fernanda Araujo Baião
    • 2
  1. 1.Institute of Information BusinessWU ViennaAustria
  2. 2.Department of Applied InformaticsFederal University of the State of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations