Simulation of Wave Propagation and Impact Damage in Brittle Materials Using Peridynamics

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 105)

Abstract

In this paper we present the results of simulating wave propagation and impact damage in brittle materials, like ceramics, using peridynamics, a non-local generalization of continuum mechanics. Two different bond-based material models, the prototype microelastic material model and its improved version, were used to model aluminum oxynitride (ALON). To validate the simulations, the speed of the wave front is compared with measured data of the edge-on impact (EOI) experiment. The presented simulation results indicate that convergence is attained, however, a modeling error of 10 % remains. Which indicates that simple bond-based peridynamics models may not be sufficient to achieve sufficient accuracy in these applications, but more sophisticated state-based peridynamics models must be employed.

References

  1. 1.
    Benson, D.J.: Computational methods in lagrangian and eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99(2–3), 235–394 (1992)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bobaru, F., Hu, W.: The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials. Int. J. Fract. 176(2), 215–222 (2012). doi:10.1007/s10704-012-9725-z. http://dx.doi.org/10.1007/s10704-012-9725-z
  3. 3.
    Brannon, R., Fossum, A., Strack, E.: Kayenta: Theory and User’s Guide. Tech. Rep. SAND2009-2282, Sandia National Laboratories, Albuquerque (2009)Google Scholar
  4. 4.
    Diehl, P.: Implementierung eines Peridynamik-Verfahrens auf GPU. Diplomarbeit, Institute of Parallel and Distributed Systems, University of Stuttgart (2012)Google Scholar
  5. 5.
    Du, Q., Tian, X.: Robust discretization of nonlocal models related to peridynamics. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol. 100, pp. 97–113. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Franzelin, F., Diehl, P., Pflüger, D.: Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol. 100. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Ganzenmüller, G.C., Hiermaier, S., May, M.: Improvements to the Prototype Micro-Brittle Linaear Elasticity Model of Peridynamics. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol. 100. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Leavy, R.B., Clayton, J.D., Strack, O.E., Brannon, R.M., Strassburger, E.: Edge on impact simulations and experiments. Proc. Eng. 58(0), 445–452 (2013). Proceedings of the 12th Hypervelocity Impact SymposiumGoogle Scholar
  9. 9.
    Parks, M.L., Lehoucq, R.B., Plimpton, S.J., Silling, S.A.: Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179, 777–783 (2008)MATHCrossRefGoogle Scholar
  10. 10.
    Riedel, W., Hiermaier, S., Thoma, K.: Transient stress and failure analysis of impact experiments with ceramics. Mater. Sci. Eng. B 173, 139–147 (2010)CrossRefGoogle Scholar
  11. 11.
    Schradin, H.: Physikalische Vorgänge bei hohen Belastungen und Belastungsgeschwindigikeiten (Physical processes at high loadings and loading rates). In: Scripts for German Academy for Aeronautical Research, vol. 40, pp. 21–68 (1939)Google Scholar
  12. 12.
    Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Silling, S.A.: A coarsening method for linear peridynamics. Int. J. Multiscale Comput. Eng. 9(6), 609–621 (2011)CrossRefGoogle Scholar
  14. 14.
    Silling, S., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRefGoogle Scholar
  15. 15.
    Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constititive modeling. J. Elast. 88, 151–184 (2007)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Strassburger, E.: Visualization of impact damage in ceramics using the edge-on impact technique. Int. J. Appl. Ceram. Technol. 1, 235–242 (2004)CrossRefGoogle Scholar
  17. 17.
    Strassburger, E., Patel, P., McCauley, J.W., Tempelton, D.W.: Visualization of wave propagation and impact damage in a polycrystalline transparent ceramic - AlON. In: 22nd International Symposium on Ballistics, vol. 2, pp. 769–776. DEStech Publications, Lancaster (2005)Google Scholar
  18. 18.
    Strassburger, E., Patel, P., McCauley, J.W., Templeton, D.W.: High-speed photographic study of wave propagation and iimpact damage in fused silcia and alon using the edge-on impact (EOI) method. AIP Conf. Proc. 892 (2006). doi:http://dx.doi.org/10.1063/1.2263465
  19. 19.
    Winkler, S., Senf, H., Rothenhausler, H.: Wave and fracture phenomena in impacted ceramics. EMI-Report V5/89, Fraunhofer-Inst Fuer Werkstoffmechanik Freiburg (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Numerical SimulationBonnGermany

Personalised recommendations