In Situ TEM Electrical Measurements

  • Silvia Canepa
  • Sardar Bilal Alam
  • Duc-The Ngo
  • Frances M. Ross
  • Kristian Mølhave

Abstract

Transmission electron microscopy (TEM) offers high spatial and temporal resolution that provides unique information for understanding the function and properties of nanostructures on their characteristic length scales. Under controlled environmental conditions and with the ability to dynamically influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper understanding of complex physical and chemical interactions in the pursuit to optimize nanostructure function and device performance. Recent developments of sample holder technology for TEM have enabled a new field of research in the study of functional nanomaterials and devices via electrical stimulation and measurement of the specimen. Recognizing the benefits of electrical measurements for in situ TEM, many research groups have focused their effort in this field and some of these methods have transferred to ETEM. This chapter will describe recent advances in the in situ TEM investigation of nanostructured materials and devices with the specimen being contacted by electrical, mechanical or other means, with emphasis on in situ electrical measurements performed in a gaseous or liquid environment. We will describe the challenges and prospects of electrical characterization of devices and processes induced by a voltage in gas and liquids. We will also provide a historical perspective of in situ TEM electrical measurements and applications using electrical contacts.

References

  1. I.M. Abrams, J.W. McBain, A closed cell for electron microscopy. J Appl Phys 15(8), 607 (1944). doi:10.1063/1.1707475 CrossRefGoogle Scholar
  2. M. Ahmad, C. Pan, J. Zhao, J. Iqbal, J. Zhu, Electron irradiation effect and photoluminescence properties of ZnO-tetrapod nanostructures. Mater Chem Phys 120(2-3), 319–322 (2010). doi:10.1016/j.matchemphys.2009.11.015 CrossRefGoogle Scholar
  3. S.B. Alam, E. Jensen, F.M. Ross, O. Hansen, A. Burrows, K. Mølhave, Suspended microsystems for in-situ TEM studies of processes in gases and liquids. Microsc Microanal 19(S2), 402–403 (2013). doi:10.1017/S1431927613004005 Google Scholar
  4. M. Arita, R. Tokuda, K. Hamada, Y. Takahashi, Development of TEM holder generating in-plane magnetic field used for in-situ TEM observation. Mater Trans 55(3), 403–409 (2014). doi:10.2320/matertrans.md201310 Google Scholar
  5. A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, In situ probing of electromechanical properties of an individual ZnO nanobelt. Appl Phys Lett 95(17), 172106 (2009). doi:10.1063/1.3241075 CrossRefGoogle Scholar
  6. G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. Garcia, A. Zettl, Probing nanoscale solids at thermal extremes. Phys Rev Lett 99(15), 239904 (2007)CrossRefGoogle Scholar
  7. I.A. Blech, E.S. Meieran, Direct transmission electron microscope observation of electrotransport in aluminum thin films. Appl Phys Lett 11(8), 263–266 (1967). doi:10.1063/1.1755127 CrossRefGoogle Scholar
  8. I.A. Blech, E.S. Meieran, Electromigration in thin Al films. J Appl Phys 40(2), 485–491 (1969). doi:10.1063/1.1657425 CrossRefGoogle Scholar
  9. E.P. Butler, In situ experiments in the transmission electron microscope. Rep Prog Phys 42(5), 833–895 (1979). doi:10.1088/0034-4885/42/5/002 CrossRefGoogle Scholar
  10. F. Cavalca, A.B. Laursen, J.B. Wagner, C.D. Damsgaard, I. Chorkendorff, T.W. Hansen, Light-induced reduction of cuprous oxide in an environmental transmission electron microscope. Chemcatchem 5(9), 2667–2672 (2013)CrossRefGoogle Scholar
  11. C.Y. Chang, V.D. Vankar, Y.C. Lee, R.W. Vook, A.J. Patrinos, J.A. Schwarz, Electromigration studies using in situ TEM electrical resistance measurements. Vacuum 41(4-6), 1434–1436 (1990)CrossRefGoogle Scholar
  12. S.W. Chee, S.H. Pratt, K. Hattar, D. Duquette, F.M. Ross, R. Hull, Studying localized corrosion using liquid cell transmission electron microscopy. Chem Commun 51(1), 168–171 (2015). doi:10.1039/c4cc06443g CrossRefGoogle Scholar
  13. K.-C. Chen, C.-N. Liao, W.-W. Wu, L.-J. Chen, Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl Phys Lett 90(20), 203101 (2007)CrossRefGoogle Scholar
  14. J.F. Creemer, S. Helveg, P.J. Kooyman, A.M. Molenbroek, H.W. Zandbergen, P.M. Sarro, A MEMS Reactor for Atomic-Scale Microscopy of Nanomaterials Under Industrially Relevant Conditions. J Microelectromech Syst 19(2), 254–264 (2010)CrossRefGoogle Scholar
  15. N. de Jonge, F.M. Ross, Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695–704 (2011). doi:10.1038/nnano.2011.161 CrossRefGoogle Scholar
  16. D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)CrossRefGoogle Scholar
  17. R. Gao, Z. Pan, Z.L. Wang, Work function at the tips of multiwalled carbon nanotubes. Appl Phys Lett 78(12), 1757–1759 (2001). doi:10.1063/1.1356442 CrossRefGoogle Scholar
  18. B. Gao, M. Rudneva, K.S. McGarrity, Q. Xu, F. Prins, J.M. Thijssen, H. Zandbergen, H.S.J. Van Der Zant, In situ transmission electron microscopy imaging of grain growth in a platinum nanobridge induced by electric current annealing. Nanotechnology 22(20), 205705 (2011). doi:10.1088/0957-4484/22/20/205705 CrossRefGoogle Scholar
  19. H. Ghassemi, M. Au, N. Chen, P.A. Heiden, R.S. Yassar, In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACS Nano 5(10), 7805–7811 (2011). doi:10.1021/nn2029814 CrossRefGoogle Scholar
  20. D. Golberg, M. Mitome, K. Kurashima, C.Y. Zhi, C.C. Tang, Y. Bando, O. Lourie, In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope. Appl Phys Lett 88(12), 123101 (2006)CrossRefGoogle Scholar
  21. M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, R.L. Sacci, W. Xu, J.G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, C.M. Wang, Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13(12), 6106–6112 (2013). doi:10.1021/nl403402q CrossRefGoogle Scholar
  22. K. He, J.-H. Cho, Y. Jung, Silicon nanowires: electron holography studies of doped p-n junctions and biased Schottky barriers. Nanotechnology 24(11), 115703 (2013)CrossRefGoogle Scholar
  23. H.B. Heersche, L. Gn, K. O'Neill, H.S.J. Van Der Zant, H.W. Zandbergen, In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Appl Phys Lett 91(7), 072107 (2007). doi:10.1063/1.2767149 CrossRefGoogle Scholar
  24. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Norskov, Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004)CrossRefGoogle Scholar
  25. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 1515–1520 (2010). doi:10.1126/science.1195628 CrossRefGoogle Scholar
  26. E. Jensen, C. Købler, P.S. Jensen, K. Mølhave, E. Jensen, C. Købler, P.S. Jensen, K. Mølhave, In-situ SEM microchip setup for electrochemical experiments with water based solutions. Ultramicroscopy 129, 63–69 (2013). doi:10.1016/j.ultramic.2013.03.002 CrossRefGoogle Scholar
  27. E. Jensen, A. Burrows, K. Mølhave, Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc Microanal 20(2), 445–451 (2014). doi:10.1017/s1431927614000300 CrossRefGoogle Scholar
  28. C. Kallesøe, C.-Y. Wen, T.J. Booth, O. Hansen, P. Bøggild, F.M. Ross, K. Mølhave, In situ TEM creation and electrical characterization of nanowire devices. Nano Lett 12(6), 2965–2970 (2012). doi:10.1021/nl300704u CrossRefGoogle Scholar
  29. A. Kolmakov, D.A. Dikin, L.J. Cote, J.X. Huang, M.K. Abyaneh, M. Amati, L. Gregoratti, S. Gunther, M. Kiskinova, Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat Nanotechnol 6(10), 651–657 (2011). doi:10.1038/Nnano.2011.130 CrossRefGoogle Scholar
  30. T. Kozlova, M. Rudneva, H.W. Zandbergen, In situ TEM and STEM studies of reversible electromigration in thin palladium-platinum bridges. Nanotechnology 24(50), 505708 (2013). doi:10.1088/0957-4484/24/50/505708 CrossRefGoogle Scholar
  31. A. Kushima, J.Y. Huang, J. Li, Quantitative fracture strength and plasticity measurements of Lithiated silicon nanowires by in situ TEM tensile experiments. ACS Nano 6(11), 209425–209432 (2012). doi:10.1021/nn3037623 CrossRefGoogle Scholar
  32. T. Kuzumaki, H. Sawada, H. Ichinose, Y. Horiike, T. Kizuka, Selective processing of individual carbon nanotubes using dual-nanomanipulator installed in transmission electron microscope. Appl Phys Lett 79(27), 4580–4582 (2001). doi:10.1063/1.1430022 CrossRefGoogle Scholar
  33. D. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084), 1014–1018 (2012). doi:10.1126/science.1219643 CrossRefGoogle Scholar
  34. H.-G. Liao, L. Cui, S. Whitelam, H. Zheng, Real-time imaging of Pt3Fe Nanorod growth in solution. Science 336(6084), 1011–1014 (2012). doi:10.1126/science.1219185 CrossRefGoogle Scholar
  35. C.K. Lim, G. Yi, J.N. Chapman, W.A.P. Nicholson, S. McVitie, C.D.W. Wilkinson, TEM studies of the switching characteristics of small permalloy elements as a function of field orientation. J Phys D Appl Phys 36(24), 3099–3102 (2003). doi:10.1088/0022-3727/36/24/001 CrossRefGoogle Scholar
  36. K.H. Liu, W.L. Wang, Z. Xu, L. Liao, X.D. Bai, E.G. Wang, In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl Phys Lett 89(22), 221908 (2006)CrossRefGoogle Scholar
  37. X. Liu, J. Zhu, C. Jin, L.-M. Peng, D. Tang, H. Cheng, In situ electrical measurements of polytypic silver nanowires. Nanotechnology 19(8), 085711 (2008). doi:10.1088/0957-4484/19/8/085711 CrossRefGoogle Scholar
  38. X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11(8), 3312–3318 (2011). doi:10.1021/nl201684d CrossRefGoogle Scholar
  39. X.H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu, J. Li, J.Y. Huang, In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2 (7), 722–741 (2012). doi:10.1002/aenm.201200024 CrossRefGoogle Scholar
  40. Y. Lu, C.A. Merchant, M. Drndić, A.T.C. Johnson, In situ electronic characterization of graphene Nanoconstrictions fabricated in a transmission electron microscope. Nano Lett 11(12), 5184–5188 (2011). doi:10.1021/nl2023756 CrossRefGoogle Scholar
  41. B.L. Mehdi, M. Gu, L.R. Parent, W. Xu, E.N. Nasybulin, X. Chen, R.R. Unocic, P. Xu, D.A. Welch, P. Abellan, J.-G. Zhang, J. Liu, C.-M. Wang, I. Arslan, J. Evans, N.D. Browning, In-situ electrochemical transmission electron microscopy for battery research. Microsc Microanal 20(2), 484–492 (2014). doi:10.1017/S1431927614000488 CrossRefGoogle Scholar
  42. P.A. Midgley, R.E. Dunin-Borkowski, P.A. Midgley, R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat Mater 8(4), 271–280 (2009). doi:10.1038/nmat2406 CrossRefGoogle Scholar
  43. B.K. Miller, P.A. Crozier, System for in situ UV-visible illumination of environmental transmission electron microscopy samples. Microsc Microanal 19(2), 461–469 (2013). doi:10.1017/S1431927612014122 CrossRefGoogle Scholar
  44. K. Molhave, S.B. Gudnason, A.T. Pedersen, C.H. Clausen, A. Horsewell, P. Boggild, Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy 108(1), 52–57 (2007). doi:10.1016/j.ultramic.2007.03.001 CrossRefGoogle Scholar
  45. C.-Y. Nam, P. Jaroenapibal, D. Tham, D.E. Luzzi, S. Evoy, J.E. Fischer, Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett 6(2), 153–158 (2006)CrossRefGoogle Scholar
  46. H. Ohnishi, Y. Kondo, K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms. Nature 395(6704), 780–783 (1998). doi:10.1038/27399 CrossRefGoogle Scholar
  47. M.L.B. Palacio, B. Bhushan, Depth-sensing indentation of nanomaterials and nanostructures. Mater Charact 78, 1–20 (2013)CrossRefGoogle Scholar
  48. N. Petkov, In situ real-time TEM reveals growth, transformation and function in one-dimensional nanoscale materials: from a nanotechnology perspective. ISRN Nanotechnol 2013, 1–21 (2013). doi:10.1155/2013/893060 CrossRefGoogle Scholar
  49. P. Poncharal, S. Frank, Z.L. Wang, W.A. De Heer, Conductance quantization in multiwalled carbon nanotubes. Eur Phys J D 9(1-4), 77–79 (1999a)Google Scholar
  50. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. De Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999b). doi:10.1126/science.283.5407.1513 CrossRefGoogle Scholar
  51. P. Poncharal, C. Berger, Y. Yi, Z.L. Wang, W.A. de Heer, Room temperature ballistic conduction in carbon nanotubes. J Phys Chem B 106(47), 12104–12118 (2002). doi:10.1021/jp021271u CrossRefGoogle Scholar
  52. A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, F.M. Ross, Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2), 238–242 (2006)CrossRefGoogle Scholar
  53. R. Rodwell, D.A. Worrall, Quality control in ultrasonic wire bonding. Microelect Int 2(3), 67–72 (1985). doi:10.1108/eb044187 CrossRefGoogle Scholar
  54. F.M. Ross, Controlling nanowire structures through real time growth studies. Rep Prog Phys 73(11), 114501 (2010). doi:10.1088/0034-4885/73/11/114501 CrossRefGoogle Scholar
  55. N.M. Schneider, M.M. Norton, B.J. Mendel, J.M. Grogan, F.M. Ross, H.H. Bau, Electron-water interactions and implications for liquid cell electron microscopy. J Phys Chem C 118(38), 22373–22382 (2014). doi:10.1021/jp507400n CrossRefGoogle Scholar
  56. D. Shindo, K. Takahashi, Y. Murakami, K. Yamazaki, S. Deguchi, H. Suga, Y. Kondo, Development of a multifunctional TEM specimen holder equipped with a piezodriving probe and a laser irradiation port. J Electron Microsc (Tokyo) 58(4), 245–249 (2009). doi:10.1093/jmicro/dfp018 CrossRefGoogle Scholar
  57. J. Silcox, Magnetic domain walls in thin films of nickel and cobalt. Philos Mag 8(85), 7–28 (1963)CrossRefGoogle Scholar
  58. P. Sofronis, I.M. Robertson, Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 82(17-18), 3405–3413 (2002)Google Scholar
  59. Q. Su, L. Chang, J. Zhang, G. Du, B. Xu, In situ TEM observation of the electrochemical process of individual CeO2/graphene anode for lithium Ion battery. J Phys Chem C 117(8), 204292–204298 (2013). doi:10.1021/jp312169j CrossRefGoogle Scholar
  60. X.L. Tan, H. He, J.K. Shang, In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectrics. J Mater Res 20(7), 1641–1653 (2005). doi:10.1557/JMR.2005.0213 CrossRefGoogle Scholar
  61. A.H. Tavabi, Z. Yasenjiang, T. Tanji, In situ off-axis electron holography of metal-oxide hetero-interfaces in oxygen atmosphere. J Electron Microsc (Tokyo) 60(5), 307–314 (2011). doi:10.1093/jmicro/dfr056 CrossRefGoogle Scholar
  62. K.J. Terhune, L.B. King, K. He, J. Cumings, In Situ Study of Ionic Liquid Taylor Cones Using Electron Microscopy, in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, California, 2013. American Institute of Aeronautics and AstronauticsGoogle Scholar
  63. J.M. Titchmarsh, A.J. Lapworth, G.R. Booker, A new method for investigating the electric field regions of p-n junctions. Phys Status Solidi 34(2), K83–K86 (1969)CrossRefGoogle Scholar
  64. A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley, Quantitative electron holography of biased semiconductor devices. Phys Rev Lett 88(23), 2383021–2383024 (2002)CrossRefGoogle Scholar
  65. A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley, Comparison of off-axis and in-line electron holography as quantitative dopant-profiling techniques. Philos Mag 86(36), 5805–5823 (2006). doi:10.1080/14786430600815385 CrossRefGoogle Scholar
  66. A.C. Twitchett, T.J.V. Yates, S.B. Newcomb, R.E. Dunin-Borkowski, P.A. Midgley, A.C. Twitchett, T.J.V. Yates, S.B. Newcomb, R.E. Dunin-Borkowski, P.A. Midgley, High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett 7(7), 2020–2023 (2007). doi:10.1021/nl070858n CrossRefGoogle Scholar
  67. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4 (5), 89–90 (1964). doi:10.1063/1.1753975 CrossRefGoogle Scholar
  68. J.B. Wagner, F. Cavalca, C.D. Damsgaard, L.D.L. Duchstein, T.W. Hansen, P.A.C. Renu Sharma, Exploring the environmental transmission electron microscope. Micron 43(11), 1169–1175 (2012). doi:10.1016/j.micron.2012.02.008 CrossRefGoogle Scholar
  69. Z.L. Wang, Properties of nanobelts and nanotubes measured by in situ TEM. Microsc Microanal 10(1), 158–166 (2004). doi:10.1017/S1431927604040371 CrossRefGoogle Scholar
  70. Z.L. Wang, P. Poncharal, W.A. de Heer, Nanomeasurements in transmission electron microscopy. Microsc Microanal 6(3), 224–230 (2000)Google Scholar
  71. Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R. Dai, Z.W. Pan, Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mater Sci Eng C Biomimetic Supramol Syst C16(1-2), 3–10 (2001)CrossRefGoogle Scholar
  72. Z.G. Wang, T. Hirayama, K. Sasaki, H. Saka, N. Kato, Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam. Appl Phys Lett 80(2), 246–248 (2002). doi:10.1063/1.1432746 CrossRefGoogle Scholar
  73. B. Westenfelder, J.C. Meyer, J. Biskupek, G. Algara-Siller, L.G. Lechner, J. Kusterer, U. Kaiser, C.E. Krill, E. Kohn, F. Scholz, Graphene-based sample supports for in situ high-resolution TEM electrical investigations. J Phys D 44(5), 055502 (2011). doi:10.1088/0022-3727/44/5/055502 CrossRefGoogle Scholar
  74. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532–536 (2003). doi:10.1038/nmat944 CrossRefGoogle Scholar
  75. Z. Xu, In situ TEM study of electric field-induced microcracking in piezoelectric single crystals. Mater Sci Eng B B99(1-3), 106–111 (2003)CrossRefGoogle Scholar
  76. Z. Xu, X.D. Bai, E.G. Wang, Z.L. Wang, Field emission of individual carbon nanotube with in situ tip image and real work function. Appl Phys Lett 87(16), 163106 (2005)CrossRefGoogle Scholar
  77. Z. Xu, X.D. Bai, E.G. Wang, Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy. Appl Phys Lett 88(13), 133107 (2006). doi:10.1063/1.2188389 CrossRefGoogle Scholar
  78. Z. Xu, Y. Bando, L. Liu, W. Wang, X. Bai, D. Golberg, Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano 5(6), 4401–4406 (2011). doi:10.1021/nn103200t CrossRefGoogle Scholar
  79. J.C. Yang, M.W. Small, R.V. Grieshaber, R.G. Nuzzo, Recent developments and applications of electron microscopy to heterogeneous catalysis. Chem Soc Rev 41(24), 8179–8194 (2012). doi:10.1039/c2cs35371g CrossRefGoogle Scholar
  80. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, High-resolution EM of colloidal Nanocrystal growth using graphene liquid cells. Science 336(6077), 61–64 (2012). doi:10.1126/science.1217654 CrossRefGoogle Scholar
  81. T.D. Yuzvinsky, A.M. Fennimore, W. Mickelson, C. Esquivias, A. Zettl, Precision cutting of nanotubes with a low-energy electron beam. Appl Phys Lett 86(5), 083103 (2005a)CrossRefGoogle Scholar
  82. T.D. Yuzvinsky, W. Mickelson, S. Aloni, S.L. Konsek, A.M. Fennimore, G.E. Begtrup, A. Kis, B.C. Regan, A. Zettl, Imaging the life story of nanotube devices. Appl Phys Lett 87(8) (2005b)Google Scholar
  83. J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu, Electrical breakdown of nanowires. Nano Lett 11(11), 4647–4651 (2011). doi:10.1021/nl202160c CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Silvia Canepa
    • 1
  • Sardar Bilal Alam
    • 1
  • Duc-The Ngo
    • 1
  • Frances M. Ross
    • 2
  • Kristian Mølhave
    • 1
  1. 1.DTU Nanotech Department of Micro- and NanotechnologyTechnical University of DenmarkLyngbyDenmark
  2. 2.IBM T. J. Watson Research CenterYorktown HeightsNew YorkUSA

Personalised recommendations