Advertisement

Measuring the Local Viscosity and Velocity of Fluids Using a Biomimetic Tactile Whisker

  • Tom Rooney
  • Martin J. Pearson
  • Tony Pipe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9222)

Abstract

A novel technique for determining the relative visco-density of fluids using an actuated flexible beam inspired by the tactile whiskers of marine mammals is presented. This was developed for the in-situ calibration of a tactile whisker based system for measuring flow velocity around autonomous robots working in complex underwater environments.

Keywords

Whiskers Viscosity Re-afferent Flow sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mulhearn, P.: Mapping seabed vegetation with sidescan sonar (2001)Google Scholar
  2. 2.
    Goodman, L., Sastre-Cordova, M.M.: On observing acoustic backscattering from salinity turbulence. The Journal of the Acoustical Society of America 130(2), 707–715 (2011)CrossRefGoogle Scholar
  3. 3.
    Martin, A., Cexus, J., Le Chenadec, G., Cantéro, E., Landeau, T., Dupas, Y., Courtis, R.: Autonomous underwater vehicle sensors fusion by the theory of belief functions for rapid environment assessment. In: Proceedings of ECUA (2010)Google Scholar
  4. 4.
    Sullivan, J., Mitchinson, B., Pearson, M.J., Evans, M., Lepora, N.F., Fox, C.W., Melhuish, C., Prescott, T.J.: Tactile discrimination using active whisker sensors. IEEE Sensors Journal 12(2), 350–362 (2012)CrossRefGoogle Scholar
  5. 5.
    Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G., Prescott, T.J.: Biomimetic vibrissal sensing for robots. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1581), 3085–3096 (2011)CrossRefGoogle Scholar
  6. 6.
    Pearson, M.J., Fox, C., Sullivan, J.C., Prescott, T.J., Pipe, T., Mitchinson, B.: Simultaneous localisation and mapping on a multi-degree of freedom biomimetic whiskered robot. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 586–592. IEEE (2013)Google Scholar
  7. 7.
    Rooney, T., Pearson, M., Welsby, J., Horsfield, I., Sewell, R., Dogramadzi, S.: Object localisation using active whiskers on underwater autonomous walking robots. In: 14th International Conference on Climbing and Walking Robots (CLAWAR), pp. 190–195 (2011)Google Scholar
  8. 8.
    Koopmann, G.: The vortex wakes of vibrating cylinders at low reynolds numbers. Journal of Fluid Mechanics 28(03), 501–512 (1967)CrossRefGoogle Scholar
  9. 9.
    Dehnhardt, G., Mauck, B., Hanke, W., Bleckmann, H.: Hydrodynamic trail-following in harbor seals (phoca vitulina). Science 293(5527), 102–104 (2001)CrossRefGoogle Scholar
  10. 10.
    Kastelein, R., Stevens, S., Mosterd, P.: The tactile sensitivity of the mystacial vibrissae of a pacific walrus (odobenus rosmarus divergem). part 2: Masking. Aquatic Mammals 16, 78–87 (1990)Google Scholar
  11. 11.
    Born, E., Rysgaard, S., Ehlmé, G., Sejr, M.K., Acquarone, M., Levermann, N.: Underwater observations of foraging free-living atlantic walruses (odobenus rosmarus rosmarus) and estimates of their food consumption. Polar Biology 26(5), 348–357 (2003)Google Scholar
  12. 12.
    Miersch, L., Hanke, W., Wieskotten, S., Hanke, F., Oeffner, J., Leder, A., Brede, M., Witte, M., Dehnhardt, G.: Flow sensing by pinniped whiskers. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1581), 3077–3084 (2011)CrossRefGoogle Scholar
  13. 13.
    Hanke, W., Witte, M., Miersch, L., Brede, M., Oeffner, J., Michael, M., Hanke, F., Leder, A., Dehnhardt, G.: Harbor seal vibrissa morphology suppresses vortex-induced vibrations. The Journal of experimental biology 213(Pt 15), 2665–2672 (2010)CrossRefGoogle Scholar
  14. 14.
    Alvarado, P.V., Subramaniam, V., Triantafyllou, M.: Performance analysis and characterization of bio-inspired whisker sensors for underwater applications. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5956–5961. IEEE (2013)Google Scholar
  15. 15.
    Delefortrie, G., Vantorre, M., Laforce, E., et al.: Revision of the nautical bottom concept in zeebrugge based on the manoeuvrability of deep-drafted container ships (2005)Google Scholar
  16. 16.
    Vogel, S., LaBarbera, M.: Simple flow tanks for research and teaching. Bioscience, 638–643 (1978)Google Scholar
  17. 17.
    Reynolds, O.: On the experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct of sinuous and of the law of resistance in parallel channels. Philosophical Transactions of the Royal society of London, 174 (1883)Google Scholar
  18. 18.
    Segur, J.B., Oberstar, H.E.: Viscosity of glycerol and its aqueous solutions. Industrial & Engineering Chemistry 43(9), 2117–2120 (1951)CrossRefGoogle Scholar
  19. 19.
    Bourguet, R., Karniadakis, G., Triantafyllou, M.S.: Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow. Journal of Fluids and Structures 27, 838–847 (2011)CrossRefGoogle Scholar
  20. 20.
    Badiane, D., Gasser, A., Blond, E.: Vibrating beam in viscous fluid for viscosity sensing: application to an industrial vibrating viscometer. In: Proceedings of the 12th Pan American Congress of Applied Mecahnics (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Bristol Robotics LaboratoryUniversity of Bristol and University of the West of EnglandBristolUK

Personalised recommendations