Advertisement

Active Control for Object Perception and Exploration with a Robotic Hand

  • Uriel Martinez-Hernandez
  • Nathan F. Lepora
  • Tony J. Prescott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9222)

Abstract

We present an investigation on active control for intelligent object exploration using touch with a robotic hand. First, uncertainty from the exploration is reduced by a probabilistic method based on the accumulation of evidence through the interaction with an object of interest. Second, an intrinsic motivation approach allows the robot hand to perform intelligent active control of movements to explore interesting locations of the object. Passive and active perception and exploration were implemented in simulated and real environments to compare their benefits in accuracy and reaction time. The validation of the proposed method were performed with an object recognition task, using a robotic platform composed by a three-fingered robotic hand and a robot table. The results demonstrate that our method permits the robotic hand to achieve high accuracy for object recognition with low impact on the reaction time required to perform the task. These benefits make our method suitable for perception and exploration in autonomous robotics.

Keywords

Tactile sensing Active perception Tactile exploration Robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lederman, S.J., Klatzky, R.L.: Hand movements: A window into haptic object recognition. Cognitive Psychology 19(19), 342–368 (1987)CrossRefGoogle Scholar
  2. 2.
    Bajcsy, R., Lederman, S.J., Klatzky, R.L.: Object exploration in one and two fingered robots, Number 3, pp. 1806–1810. Computer Society Press (1987)Google Scholar
  3. 3.
    Bajcsy, R.: Active perception. Proceedings of the IEEE 76(8), 966–1005 (1988)CrossRefGoogle Scholar
  4. 4.
    Prescott, T.J., Pearson, M.J., Mitchinson, B., Sullivan, J.C.W., Pipe, A.G.: Whisking with robots. IEEE Robotics Automation Magazine 16(3), 42–50 (2009)CrossRefGoogle Scholar
  5. 5.
    Martinez-Hernandez, U., Dodd, T.J., Prescott, T.J., Lepora, N.F.: Active bayesian perception for angle and position discrimination with a biomimetic fingertip. In: 2013 IEEE International Conference on (IROS), pp. 5968–5973 (2013)Google Scholar
  6. 6.
    Martinez-Hernandez, U., Dodd, T.J., Natale, L., Metta, G., Prescott, T.J., Lepora, N.F.: Active contour following to explore object shape with robot touch. In: World Haptics Conference (WHC), pp. 341–346 (2013)Google Scholar
  7. 7.
    Lepora, N.F., Martinez-Hernandez, U., Prescott, T.J.: A SOLID case for active bayesian perception in robot touch. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 154–166. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Lepora, N.F., Martinez-Hernandez, U., Prescott, T.J.: Active bayesian perception for simultaneous object localization and identification. In: Robotics: Science and Systems (2013)Google Scholar
  9. 9.
    Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology 25(1), 54–67 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Barto, A.G., Singh, S., Chentanez, N.: Intrinsically motivated learning of hierarchical collections of skills. In: Proc. 3rd Int. Conf. Development Learn, pp. 112–119 (2004)Google Scholar
  11. 11.
    Baranès, A., Oudeyer, P.-Y.: R-iac: Robust intrinsically motivated exploration and active learning. IEEE Transactions on Autonomous Mental Development 1(3), 155–169 (2009)CrossRefGoogle Scholar
  12. 12.
    Oudeyer, P.-Y., Kaplan, F.: What is intrinsic motivation? a typology of computational approaches. Frontiers in Neurorobotics 1 (2007)Google Scholar
  13. 13.
    Stout, A., Konidaris, G.D., Barto, A.G.: Intrinsically motivated reinforcement learning: A promising framework for developmental robot learning. Technical report, DTIC Document (2005)Google Scholar
  14. 14.
    Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.D.: Tactile-object recognition from appearance information. IEEE Transactions on Robotics 27(3), 473–487 (2011)CrossRefGoogle Scholar
  15. 15.
    Ratnasingam, S., McGinnity, T.M.: Object recognition based on tactile form perception. In: 2011 IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS), pp. 26–31, April 2011Google Scholar
  16. 16.
    Johnsson, M., Balkenius, C.: Neural network models of haptic shape perception. Robotics and Autonomous Systems 55(9), 720–727 (2007)CrossRefGoogle Scholar
  17. 17.
    Fitzpatrick, P., Metta, G., Natale, L.: Yet another robot platform. http://eris.liralab.it/yarpdoc/index.html
  18. 18.
    Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., Metta, G.: Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Transactions on Robotics 27(3), 389–400 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Uriel Martinez-Hernandez
    • 1
  • Nathan F. Lepora
    • 2
  • Tony J. Prescott
    • 1
  1. 1.Sheffield Robotics Laboratory and the Department of PsychologyUniversity of SheffieldSheffieldUK
  2. 2.Department of Engineering MathematicsThe University of Bristol and Bristol Robotics Laboratory (BRL)BristolUK

Personalised recommendations