MantisBot: A Platform for Investigating Mantis Behavior via Real-Time Neural Control

  • Nicholas S. Szczecinski
  • David M. Chrzanowski
  • David W. Cofer
  • David R. Moore
  • Andrea S. Terrasi
  • Joshua P. Martin
  • Roy E. Ritzmann
  • Roger D. Quinn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9222)

Abstract

We present Mantisbot, a 28 degree of freedom robot controlled in real-time by a neural simulation. MantisBot was designed as a 13.3:1 model of a male Tenodera sinensis with the animal’s predominant degrees of freedom. The purpose of this robot is to investigate two main topics: 1. the control of targeted motion, such as prey-directed pivots and striking, and 2. the role of descending commands in transitioning between behaviors, such as standing, prey stalking, and walking. In order to more directly use data from the animal, the robot mimics its kinematics and range of motion as closely as possible, uses strain gages on its legs to measure femoral strain like insects, and is controlled by a realistic neural simulation of networks in the thoracic ganglia. This paper summarizes the mechanical, electrical, and software design of the robot, and how its neural control system generates reflexes observed in insects. It also presents preliminary results; the robot is capable of supporting its weight on four or six legs, and using sensory information for adaptive and corrective reflexes.

Keywords

Real-time neural control Robot Mantis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akay, T., Bässler, U., Gerharz, P., Büschges, A.: The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. Journal of Neurophysiology 85(2), 594 (2001)Google Scholar
  2. 2.
    Büschges, A., Gruhn, M.: Mechanosensory Feedback in Walking: From Joint Control to Locomotor Patterns. Advances In Insect Physiology 34(07), 193–230 (2007)CrossRefGoogle Scholar
  3. 3.
    Büschges, A., Wolf, H.: Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust. Journal of Neurophysiology 73(5), 1843–1860 (1995)Google Scholar
  4. 4.
    Cleal, K.S., Prete, F.R.: The Predatory Strike of Free Ranging Praying Mantises, Sphodromantis lineola (Burmeister). II: Strikes in the Horizontal Plane. Brain Behavior and Evolution 48, 191–204 (1996)CrossRefGoogle Scholar
  5. 5.
    Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13(1990), 15–21 (1990)CrossRefGoogle Scholar
  6. 6.
    Daun-Gruhn, S.: A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience, 255–278, June 2010Google Scholar
  7. 7.
    Dirk, S., Frank, K.: The bio-inspired SCORPION robot: design, control & lessons learned. In: Climbing and Walking Robots, Towards New Applications, pp. 197–218, October 2007Google Scholar
  8. 8.
    Espenschied, K.S., Quinn, R.D., Beer, R., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems 18(1–2), 59–64 (1996)CrossRefGoogle Scholar
  9. 9.
    Guo, P., Ritzmann, R.E.: Neural activity in the central complex of the cockroach brain is linked to turning behaviors. The Journal of Experimental Biology 216(Pt 6), 992–1002 (2013)CrossRefGoogle Scholar
  10. 10.
    Hooper, S.L., Guschlbauer, C., Blümel, M., Rosenbaum, P., Gruhn, M., Akay, T., Büschges, A.: Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 29(13), 4109–4119 (2009)CrossRefGoogle Scholar
  11. 11.
    Hunt, A., Schmidt, M., Fischer, M., Quinn, R.D.: Neuromechanical simulation of an inter-leg controller for tetrapod coordination. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 142–153. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M.S., Quinn, R.D.: Using data and neural dynamics to design and control a neuromechanical rat model. In: Living Machines (accepted 2015)Google Scholar
  13. 13.
    Knops, S.A., Tóth, T.I., Guschlbauer, C., Gruhn, M., Daun-Gruhn, S.: A neuro-mechanical model for the neural basis of curve walking in the stick insect. Journal of Neurophysiology, 679–691, November 2012Google Scholar
  14. 14.
    Ritzmann, R.E., Quinn, R.D., Watson, J.T., Zill, S.N.: Insect walking and biorobotics: A relationship with mutual benefits. Bioscience 50(1), 23–33 (2000)CrossRefGoogle Scholar
  15. 15.
    Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics 107(4), 397–419 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schneider, A., Paskarbeit, J., Schaeffersmann, M., Schmitz, J.: HECTOR, a new hexapod robot platform with increased mobility - control approach, design and communication. In: Advances in Autonomous Mini Robots, pp. 249–264 (2012)Google Scholar
  17. 17.
    Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak, I.A., Rubin, J.E.: A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation. Journal of Neural Engineering 8(6), 65003 (2011)CrossRefGoogle Scholar
  18. 18.
    Svenson, G.J., Whiting, M.F.: Phylogeny of Mantodea based on molecular data : evolution of a charismatic predator. Systematic Entomology 29, 359–370 (2004)CrossRefGoogle Scholar
  19. 19.
    Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A Neuromechanical Simulation of Insect Walking and Transition to Turning of the Cockroach Blaberus discoidalis. Biological Cybernetics (2013)Google Scholar
  20. 20.
    Szczecinski, N.S., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: Neuromechanical mantis model replicates animal postures via biological neural models. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 296–307. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Tryba, A.K., Ritzmann, R.E.: Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and Electromyograms, June 2000Google Scholar
  22. 22.
    Tuthill, J.C., Nern, A., Rubin, G.M., Reiser, M.B.: Wide-field feedback neurons dynamically tune early visual processing. Neuron 82(4), 887–895 (2014)CrossRefGoogle Scholar
  23. 23.
    Yamawaki, Y., Toh, Y.: Response Properties of Visual Interneurons to Motion Stimuli in the Praying Response Properties of Visual Interneurons to Motion Stimuli in the Praying Mantis, Tenodera aridifolia. Zoological Science 20(7), 819–832 (2003)CrossRefGoogle Scholar
  24. 24.
    Yamawaki, Y., Uno, K., Ikeda, R., Toh, Y.: Coordinated movements of the head and body during orienting behaviour in the praying mantis Tenodera aridifolia. Journal of Insect Physiology 57(7), 1010–1016 (2011)CrossRefGoogle Scholar
  25. 25.
    Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Structure & Development 33(3), 273–286 (2004)CrossRefGoogle Scholar
  26. 26.
    Zill, S., Frazier, S.: Characteristics of dynamic postural reactions in the locust hindleg. Journal of Comparative Physiology A 170, 761–772 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicholas S. Szczecinski
    • 1
  • David M. Chrzanowski
    • 1
  • David W. Cofer
    • 1
  • David R. Moore
    • 1
  • Andrea S. Terrasi
    • 1
  • Joshua P. Martin
    • 1
  • Roy E. Ritzmann
    • 1
  • Roger D. Quinn
    • 1
  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations