International Conference on Formal Modeling and Analysis of Timed Systems

FORMATS 2015: Formal Modeling and Analysis of Timed Systems pp 93-107 | Cite as

Multi-objective Parameter Synthesis in Probabilistic Hybrid Systems

  • Martin Fränzle
  • Sebastian Gerwinn
  • Paul Kröger
  • Alessandro Abate
  • Joost-Pieter Katoen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9268)


Technical systems interacting with the real world can be elegantly modelled using probabilistic hybrid automata (PHA). Parametric probabilistic hybrid automata are dynamical systems featuring hybrid discrete-continuous dynamics and parametric probabilistic branching, thereby generalizing PHA by capturing a family of PHA within a single model. Such system models have a broad range of applications, from control systems over network protocols to biological components. We present a novel method to synthesize parameter instances (if such exist) of PHA satisfying a multi-objective bounded horizon specification over expected rewards. Our approach combines three techniques: statistical model checking of model instantiations, a symbolic version of importance sampling to handle the parametric dependence, and SAT-modulo-theory solving for finding feasible parameter instances in a multi-objective setting. The method provides statistical guarantees on the synthesized parameter instances. To illustrate the practical feasibility of the approach, we present experiments showing the potential benefit of the scheme compared to a naive parameter exploration approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartlett, P.L., Mendelson, S.: Rademacher and gaussian complexities: Risk bounds and structural results. J. of Machine Learning Research 3, 463–482 (2003)MathSciNetMATHGoogle Scholar
  2. 2.
    Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In: FMCAD (2013)Google Scholar
  5. 5.
    Cortes, C., Mansour, Y., Mohri, M.: Learning bounds for importance weighting. In: Advances in Neural Information Processing Systems (NIPS), pp. 442–450 (2010)Google Scholar
  6. 6.
    Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  7. 7.
    Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains. International Journal on Software Tools for Technology Transfer 17(4), 485–504 (2015)Google Scholar
  8. 8.
    Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure. JSAT 1, 209–236 (2007)Google Scholar
  9. 9.
    Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 146–161. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. STTT 13(1), 3–19 (2011)CrossRefGoogle Scholar
  11. 11.
    Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: IEEE Real-Time Systems Symposium (RTSS), pp. 173–182. IEEE Computer Society (2008)Google Scholar
  12. 12.
    Herde, C., Eggers, A., Fränzle, M., Teige, T.: Analysis of hybrid systems using HySAT. In: Third International Conference on Systems, ICONS 2008, pp. 196–201. IEEE (2008)Google Scholar
  13. 13.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 13–30 (1963)Google Scholar
  14. 14.
    Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J.-P., Becker, B.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Formal Aspects of Computing 19(1), 93–109 (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Liu, B., Kong, S., Gao, S., Zuliani, P., Clarke, E.M.: Parameter synthesis for cardiac cell hybrid models using \(\delta \)-decisions. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 99–113. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Liu, J., Ozay, N.: Abstraction, discretization, and robustness in temporal logic control of dynamical systems. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 293–302. ACM (2014)Google Scholar
  18. 18.
    Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Sproston, J.: Decidable model checking of probabilistic hybrid automata. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  20. 20.
    Sproston, J.: Model Checking for Probabilistic Timed and Hybrid Systems. PhD thesis, School of Computer Science, The University of Birmingham (2001)Google Scholar
  21. 21.
    Tokdar, S.T., Kass, R.E.: Importance sampling: a review. Wiley Interdisciplinary Reviews: Computational Statistics 2(1), 54–60 (2010)CrossRefGoogle Scholar
  22. 22.
    Vapnik, V.N.: Statistical learning theory, vol. 1. Wiley, New York (1998)MATHGoogle Scholar
  23. 23.
    Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with dynamic balancing of time and space. In: Rubino, G. (ed.) Quantitative Evaluation of Systems (QEST), pp. 65–74. IEEE Computer Science Press (2008)Google Scholar
  24. 24.
    Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. International Journal on Software Tools for Technology Transfer (STTT) 8(3), 216–228 (2006)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Sankaranarayanan, S., Somenzi, F.: Statistically sound verification and optimization for complex systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 411–427. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Fränzle
    • 1
    • 2
  • Sebastian Gerwinn
    • 2
  • Paul Kröger
    • 1
  • Alessandro Abate
    • 3
  • Joost-Pieter Katoen
    • 4
  1. 1.Department of Computing ScienceCarl von Ossietzky UniversityOldenburgGermany
  2. 2.OFFIS Institute for Information TechnologyOldenburgGermany
  3. 3.Department of Computer ScienceOxford UniversityOxfordUK
  4. 4.Department of Computer ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations