Quantitative Analysis of Communication Scenarios
- 1 Citations
- 538 Downloads
Abstract
Message sequence charts (MSCs) and their higher-order formalism in terms of message sequence graphs (MSGs) provide an intuitive way to describe communication scenarios. Naturally, quantitative aspects such as the probability of failure, maximal latency or the expected energy consumption play a crucial role for communication systems. In this paper, we introduce quantitative MSGs with costs or rewards and stochastic timing information in terms of rates. To perform a quantitative analysis, we propose a branching-time semantics for MSGs as possibly infinite continuous-time Markov chains (CTMCs) interpreting delayed choice on the partial-order semantics of MSGs. Whereas for locally synchronized MSGs a finite-state bisimulation quotient can be found and thus, standard algorithms for CTMCs can be applied, this is not the case in general. However, using a truncation-based approach we show how approximative solutions can be obtained. Our implementation shows feasibility of this approach exploiting reliability, resilience and energy consumption.
Keywords
Model Check Transition System Reachability Problem Communication Scenario Message Sequence ChartPreview
Unable to display preview. Download preview PDF.
References
- 1.Akshay, S., Gastin, P., Mukund, M., Kumar, K.N.: Model checking time-constrained scenario-based specifications. In: FSTTCS 2010, pp. 204–215 (2010)Google Scholar
- 2.Akshay, S., Genest, B., Hélouët, L., Yang, S.: Regular set of representatives for time-constrained MSC graphs. Inf. Process. Lett. 112(14–15), 592–598 (2012)CrossRefzbMATHGoogle Scholar
- 3.Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Transactions on Software Engineering 29(7), 623–633 (2003)CrossRefGoogle Scholar
- 4.Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In: Software Concepts and Tools, pp. 304–313 (1996)Google Scholar
- 5.Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999) CrossRefGoogle Scholar
- 6.Baier, C., Cloth, L., Haverkort, B., Kuntz, M., Siegle, M.: Model checking Markov chains with actions and state labels. IEEE Transactions on Software Engineering 33(4), 209–224 (2007)CrossRefGoogle Scholar
- 7.Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)CrossRefGoogle Scholar
- 8.Baier, C., Katoen, J.-P.: Principles of model checking. The MIT Press (2008)Google Scholar
- 9.Bollig, B., Leucker, M., Lucas, P.: Analysing message sequence graph specifications. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 68–85. Springer, Heidelberg (2002) CrossRefGoogle Scholar
- 10.Chakraborty, J., D’Souza, D., Narayan Kumar, K.: Analysing message sequence graph specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 549–563. Springer, Heidelberg (2010) CrossRefGoogle Scholar
- 11.Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius: an extensible tool for performance and dependability modeling. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp. 332–336. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 12.Fantechi, A., Gnesi, S., Ristori, G.: Model checking for action-based logics. Formal Methods in System Design 4(2), 187–203 (1994)CrossRefzbMATHGoogle Scholar
- 13.Gazagnaire, T., Genest, B., Hélouët, L., Thiagarajan, P.S., Yang, S.: Causal message sequence charts. Theor. Comput. Sci. 410(41), 4094–4110 (2009)CrossRefzbMATHGoogle Scholar
- 14.Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model-checking algorithms for existentially bounded communicating automata. Inf. Comput. 204(6)Google Scholar
- 15.Gunter, E.L., Muscholl, A., Peled, D.A.: Compositional message sequence charts. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511. Springer, Heidelberg (2001) CrossRefGoogle Scholar
- 16.Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: Time-bounded model checking of infinite-state continuous-time markov chains. Fundamenta Informaticae 95(1), 129–155 (2009)MathSciNetzbMATHGoogle Scholar
- 17.Hélouët, L., Jard, C., Caillaud, B.: An event structure based semantics for high-level message sequence charts. Math. Struct. in CS 12(4), 377–402 (2002)zbMATHGoogle Scholar
- 18.Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009) CrossRefGoogle Scholar
- 19.Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press (1996)Google Scholar
- 20.Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006) CrossRefGoogle Scholar
- 21.ITU-T. Annex b: Formal semantics of message sequence charts. Z.120, v2.2 (1998)Google Scholar
- 22.ITU-T. Message Sequence Chart (MSC). Z.120, Edition 5.0 (2011)Google Scholar
- 23.Kumar, K.N.: The theory of message sequence charts. In: Modern Applications of Automata Theory, pp. 289–324 (2012)Google Scholar
- 24.Lucas, P.: Timed semantics of message sequence charts based on timed automata. Electronic Notes in Theoretical Computer Science 65(6), 160–179 (2002)CrossRefGoogle Scholar
- 25.Madhusudan, P.: Reasoning about sequential and branching behaviours of message sequence graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 809–820. Springer, Heidelberg (2001) CrossRefGoogle Scholar
- 26.Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267. Springer, Heidelberg (2001) CrossRefGoogle Scholar
- 27.Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL, Forum, pp. 291–306 (1997)Google Scholar
- 28.Mousa, A.M.: Prospective of fifth generation mobile communications. International Journal of Next-Generation Networks (2012)Google Scholar
- 29.Muscholl, A., Peled, D.: Message sequence graphs and decision problems on mazurkiewicz traces. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999) CrossRefGoogle Scholar
- 30.Muscholl, A., Peled, D.A.: Deciding properties of message sequence charts. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 43–65. Springer, Heidelberg (2005) CrossRefGoogle Scholar
- 31.O’Brien, K., Salyers, D., Striegel, A., Poellabauer, C.: Power and performance characteristics of usb flash drives. In: WoWMoM 2008, pp. 1–4, June 2008Google Scholar
- 32.Pooley, R., King, P.: The unified modeling language and performance engineering. IEEE Proceedings - Software 149, 2–10 (1999)CrossRefGoogle Scholar
- 33.Remke, A., Haverkort, B.R.: CSL model checking algorithms for infinite-state structured markov chains. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 336–351. Springer, Heidelberg (2007) CrossRefGoogle Scholar
- 34.Reniers, M.A.: Message Sequence Chart: Syntax and Semantics. PhD thesis, Eindhoven University of Technology, June 1999Google Scholar
- 35.Hammouda, I., Hautamäki, J., Pussinen, M., Koskimies, K.: Managing variability using heterogeneous feature variation patterns. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 145–159. Springer, Heidelberg (2005) CrossRefGoogle Scholar
- 36.Tanenbaum, A.S., Wetherall, D.J.: Computer Networks, 5th edn. Prentice Hall (2011)Google Scholar
- 37.Zhou, Z., Sheldon, F.T., Potok, T. E.: Modeling with stochastic message sequence charts. In: IIIS Proceedings of the International Conference on Computer, Communication, and Control Technology (CCCT 2003) (2003)Google Scholar