Advertisement

Timed-Automata Abstraction of Switched Dynamical Systems Using Control Funnels

  • Patricia Bouyer
  • Nicolas Markey
  • Nicolas Perrin
  • Philipp Schlehuber-Caissier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9268)

Abstract

The development of formal methods for control design is an important challenge with potential applications in a wide range of safety-critical cyber-physical systems. Focusing on switched dynamical systems, we propose a new abstraction, based on time-varying regions of invariance (the control funnels), that models behaviors of systems as timed automata. The main advantage of this method is that it allows automated verification of formal specifications and reactive controller synthesis without discretizing the evolution of the state of the system. Efficient constructions are possible in the case of linear dynamics. We demonstrate the potential of our approach with two examples.

Keywords

Motion Planning Reference Trajectory Switching Transition Motion Planning Problem Clock Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Computer Science 126(2), 183–235 (1994)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Computer Science 138(1), 35–65 (1995)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: SSSC 1998, pp. 469–474. Elsevier (1998)Google Scholar
  4. 4.
    Aubin, J.P.: Viability tubes. In: Byrnes, C.I., Kurzhanski, A.B. (eds.) Modelling and Adaptive Control. LNCIS, vol. 105, pp. 27–47. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  6. 6.
    Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W., Hendriks, M.: Uppaal 4.0. In: QEST 2006, pp. 125–126. IEEE, September 2006Google Scholar
  7. 7.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Computer Science 321(2–3), 291–345 (2004)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    David, A., Grunnet, J.D., Jessen, J.J., Larsen, K.G., Rasmussen, J.I.: Application of model-checking technology to controller synthesis. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 336–351. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    DeCastro, J., Kress-Gazit, H.: Synthesis of nonlinear continuous controllers for verifiably-correct high-level, reactive behaviors. IJRR 34(3), 378–394 (2014)Google Scholar
  10. 10.
    Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: EMSOFT 2013, pp. 1–10. IEEE, September 2013Google Scholar
  11. 11.
    Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robotics 21(6), 1077–1091 (2005)CrossRefGoogle Scholar
  12. 12.
    Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval temporal logic specifications. Tech. Rep. 1503.07193, ArXiv, Mar 2015Google Scholar
  13. 13.
    Julius, A.A., Pappas, G.J.: Trajectory based verification using local finite-time invariance. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 223–236. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theor. Computer Science 132(1), 113–128 (1994)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Le Ny, J., Pappas, G.J.: Sequential composition of robust controller specifications. In: ICRA 2012, pp. 5190–5195. IEEE, May 2012Google Scholar
  16. 16.
    Liu, J., Prabhakar, P.: Switching control of dynamical systems from metric temporal logic specifications. In: ICRA 2014, pp. 5333–5338. IEEE, May 2014Google Scholar
  17. 17.
    Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control design along trajectories with sums of squares programming. In: ICRA 2013, pp. 4054–4061. IEEE, May 2013Google Scholar
  18. 18.
    Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite time invariance. In: WAFR 2012. STAR, vol. 86, pp. 543–558. Springer, Heidelberg (2013)Google Scholar
  19. 19.
    Maler, O., Batt, G.: Approximating continuous systems by timed automata. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 447–484. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  21. 21.
    Mason, M.T.: The mechanics of manipulation. In: ICRA 1985, vol. 2, pp. 544–548. IEEE , March 1985Google Scholar
  22. 22.
    Quottrup, M.M., Bak, T., Zamanabadi, R.I.: Multi-robot planning : a timed automata approach. In: ICRA 2004, vol. 5, pp. 4417–4422. IEEE, April 2004Google Scholar
  23. 23.
    Sloth, C., Wisniewski, R.: Timed game abstraction of control systems. Tech. Rep. 1012.5113, ArXiv, December 2010Google Scholar
  24. 24.
    Sloth, C., Wisniewski, R.: Complete abstractions of dynamical systems by timed automata. Nonlinear Analysis: Hybrid Systems 7(1), 80–100 (2013)MathSciNetMATHGoogle Scholar
  25. 25.
    Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems. Springer (1998)Google Scholar
  26. 26.
    Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: Feedback motion planning via sums-of-squares verification. IJRR 29(8), 1038–1052 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Nicolas Markey
    • 1
  • Nicolas Perrin
    • 2
    • 3
  • Philipp Schlehuber-Caissier
    • 2
  1. 1.Laboratoire Spécification and VérificationCNRS and ENS CachanCachanFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, ISIRParisFrance
  3. 3.CNRS, UMR 7222, ISIRParisFrance

Personalised recommendations