Language Preservation Problems in Parametric Timed Automata

  • Étienne AndréEmail author
  • Nicolas Markey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9268)


Parametric timed automata (PTA) are a powerful formalism to model and reason about concurrent systems with some unknown timing delays. In this paper, we address the (untimed) language- and trace-preservation problems: given a reference parameter valuation, does there exist another parameter valuation with the same untimed language (or trace)? We show that these problems are undecidable both for general PTA, and even for the restricted class of L/U-PTA. On the other hand, we exhibit decidable subclasses: 1-clock PTA, and 1-parameter deterministic L-PTA and U-PTA.


Symbolic State Time Automaton Parameter Valuation Clock Constraint Clock Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM Press (1993)Google Scholar
  3. 3.
    André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. IJFCS 20(5), 819–836 (2009)zbMATHGoogle Scholar
  4. 4.
    André, É., Markey, N.: Language preservation problems in parametric timed automata. Research Report LSV-15-05, Laboratoire Spécification et Vérification, ENS Cachan, France, June 2015Google Scholar
  5. 5.
    Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  6. 6.
    Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. FMSD 35(2), 121–151 (2009)zbMATHGoogle Scholar
  7. 7.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. FMSD 33(1–3), 45–84 (2008)zbMATHGoogle Scholar
  8. 8.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata. Journal of Logic and Algebraic Programming 52–53, 183–220 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Transactions on Software Engineering 41(5), 445–461 (2015)CrossRefGoogle Scholar
  10. 10.
    Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  11. 11.
    Sankur, O.: Untimed language preservation in timed systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 556–567. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Sankur, O.: Robustness in Timed Automata: Analysis, Synthesis, Implementation. Thèse de doctorat, Laboratoire Spécification & Vérification, ENS Cachan, France (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université Paris 13, Sorbonne Paris Cité, LIPN, CNRSVilletaneuseFrance
  2. 2.LSV, CNRS and ENS CachanCachanFrance

Personalised recommendations