Bounded Determinization of Timed Automata with Silent Transitions

  • Florian Lorber
  • Amnon Rosenmann
  • Dejan Ničković
  • Bernhard K. Aichernig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9268)


Deterministic timed automata are strictly less expressive than their non-deterministic counterparts, which are again less expressive than those with silent transitions. As a consequence, timed automata are in general non-determinizable. This is unfortunate since deterministic automata play a major role in model-based testing, observability and implementability. However, by bounding the length of the traces in the automaton, effective determinization becomes possible. We propose a novel procedure for bounded determinization of timed automata. The procedure unfolds the automata to bounded trees, removes all silent transitions and determinizes via disjunction of guards. The proposed algorithms are optimized to the bounded setting and thus are more efficient and can handle a larger class of timed automata than the general algorithms. The approach is implemented in a prototype tool and evaluated on several examples. To our best knowledge, this is the first implementation of this type of procedure for timed automata.


Unary Constraint Observable Transition Bound Model Check Time Automaton Bypass Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernhard, K.: Aichernig and florian lorber. Towards generation of adaptive test cases from partial models of determinized timed automata. In: AMOST (2015)Google Scholar
  2. 2.
    Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants — model-based mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive power of silent transitions in timed automata. Fundam. Inform. 36(2–3), 145–182 (1998)zbMATHGoogle Scholar
  6. 6.
    Bertrand, N., Jéron, T., Stainer, A., Krichen, M.: Off-line test selection with test purposes for non-deterministic timed automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 96–111. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 245–259. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Advances in Computers 58, 117–148 (2003)CrossRefGoogle Scholar
  9. 9.
    Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed automata: forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  10. 10.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Diekert, V., Gastin, P., Petit, A.: Removing epsilon-transitions in timed automata. In: STACS, pp. 583–594. Springer (1997)Google Scholar
  12. 12.
    Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  13. 13.
    Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in System Design 34(3), 238–304 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1–2), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Lorber, F., Rosenmann, A., Ničković, D., Aichernig, B.K.: Bounded determinization of timed automata with silent transitions. Technical Report IST-MBT-2015-01. Graz University of Technology, Institute for Software Technology (2015).
  16. 16.
    Tretmans, Jan: Test generation with inputs, outputs, and quiescence. In: Margaria, Tiziana, Steffen, Bernhard (eds.) TACAS 1996. LNCS, vol. 1055, pp. 127–146. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  17. 17.
    Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Inf. Process. Lett. 99(6), 222–226 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, T., Sun, J., Liu, Y., Wang, X., Li, S.: Are timed automata bad for a specification language? language inclusion checking for timed automata. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 310–325. Springer, Heidelberg (2014) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Florian Lorber
    • 2
  • Amnon Rosenmann
    • 1
  • Dejan Ničković
    • 1
  • Bernhard K. Aichernig
    • 2
  1. 1.AIT Austrian Institute of Technology GmbH ViennaViennaAustria
  2. 2.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations