From Failure to Proof: The ProB Disprover for B and Event-B

  • Sebastian KringsEmail author
  • Jens Bendisposto
  • Michael Leuschel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9276)


The ProB disprover uses constraint solving to find counter-examples for B proof obligations. As the ProB kernel is now capable of determining whether a search was exhaustive, one can also use the disprover as a prover. In this paper, we explain how ProB has been embedded as a prover into Rodin and Atelier B. Furthermore, we compare ProB with the standard automatic provers and SMT solvers used in Rodin. We demonstrate that constraint solving in general and ProB in particular are able to deal with classes of proof obligations that are not easily discharged by other provers and solvers. As benchmarks we use medium sized specifications such as landing gear systems, a CAN bus specification and a railway system. We also present a new method to check proof obligations for inconsistencies, which has helped uncover various issues in existing (sometimes fully proven) models.



We would like to thank the various developers for giving us access to their Event-B models, and for discussions and feedback: Jean-Raymond Abrial, Andre, Attiogbe, John Colley, Régine Laleau, Luis-Fernando Mejia, Lanoix, Amel Mammar, Dominique Méry, Neeraj Kumar Singh, Wen Su.


  1. 1.
    Abrial, J.-R.: The B-Book. Cambridge University Press, New York (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    André, P., Attiogbé, C., Lanoix, A.: Modelling and analysing the landing gear system: a solution with Event-B/Rodin. Solution to ABZ-2014, Accessed: 17 March 2014
  5. 5.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  6. 6.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (2010)Google Scholar
  7. 7.
    Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Bendisposto, J., Krings, S., Leuschel, M.: Who watches the watchers: Validating the prob validation tool. In: Proceedings of the 1st Workshop on Formal-IDE, EPTCS XYZ, 2014, Electronic Proceedings in Theoretical Computer Science (2014)Google Scholar
  9. 9.
    Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-Solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Carlsson, M., Ottosson, G.: An open-ended finite domain constraint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292. Springer, Heidelberg (1997) Google Scholar
  12. 12.
    ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France (2009).
  13. 13.
    Conchon, S., Iguernelala, M.: Tuning the Alt-Ergo SMT solver for B proof obligations. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 294–297. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  14. 14.
    Déharbe, D.: Automatic verification for a class of proof obligations with SMT-solvers. Proceedings ASM 2010, 217–230 (2010)Google Scholar
  15. 15.
    Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for rodin. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a proof platform for the automated verification of B proof obligations. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 290–293. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  17. 17.
    Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level specifications. TPLP 11(4–5), 767–782 (2011)MathSciNetGoogle Scholar
  18. 18.
    Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Validation of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  19. 19.
    Konrad, M., Voisin, L.: Translation from set-theory to predicate calculus. Technical report, ETH Zurich (2011)Google Scholar
  20. 20.
    Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation to data validation: the prob constraint solver 10. In: Boulanger, J.-L. (ed.) Formal Methods Applied to ComplexSystems: Implementation of the B Method, Chap. 14, pp. 427–446. Wiley ISTE, Hoboken (2014) Google Scholar
  21. 21.
    Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer, Heidelberg (2003) Google Scholar
  22. 22.
    Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method. Software Tools for Technology Transfer (STTT) 10(2), 185–203 (2008)CrossRefGoogle Scholar
  23. 23.
    Ligot, O., Bendisposto, J., Leuschel, M.: Debugging Event-B Models using the ProB Disprover Plug-in. In: Proceedings AFADL 2007, June (2007)Google Scholar
  24. 24.
    Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In: Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 80–94. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  25. 25.
    Méry, D., Singh, N.K.: Formal specification of medical systems by proof-based refinement. ACM Trans. Embed. Comput. Syst. 12(1), 15:1–15:25 (2013)CrossRefGoogle Scholar
  26. 26.
    Su, W., Abrial, J.-R.: Aircraft landing gear system: approaches with Event-B to the modeling of an industrial system. In: Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 19–35. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  27. 27.
    Weissenbacher, G., Kröning, D., Rümmer, P.: A proposal for a theory of finite sets, lists, and maps for the smt-lib standard. In: Proceedings of the 7th International Workshop on Satisfiability Modulo Theories, SMT 2009 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sebastian Krings
    • 1
    Email author
  • Jens Bendisposto
    • 1
  • Michael Leuschel
    • 1
  1. 1.Institut für InformatikUniversität DüsseldorfDüsseldorfGermany

Personalised recommendations