Host Manipulation by Toxoplasma gondii

  • Jaroslav Flegr
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 7)


Many parasites have evolved adaptive mechanisms for manipulation of host phenotypes, including behavior, to increase their chances of transmission from infected to noninfected hosts (Holmes J, Bethel WM. Modification of intermidiate host behaviour by parasites. In: Canning EU, Wright CA (eds) Behavioural aspects of parasite transmission. Academic Press, New York, p 123–149, 1972). Very conspicuous behavioral changes are induced by parasites that are transmitted from intermediate to definitive host by predation because induced behavioral patterns increase biological fitness of the manipulating parasite but decrease fitness of the carrier – the infected animal. An already classical model for studying manipulative activity of parasites is the heteroxenous coccidian Toxoplasma gondii, whose life cycle includes transmission from intermediate host (any warm blooded animal) to definitive host (any feline species) by predation. Toxoplasma is known to modify not only the behavior of its intermediate animal hosts but also the behavior and personality of infected humans. The mechanisms most probably responsible for the observed behavioral changes are increase of dopamine, increase of testosterone in males and hypomethylation of certain regulatory elements of key genes in amygdala of infected hosts.


Infected Male Dictator Game Infected Woman Congenital Toxoplasmosis Toxoplasma Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdoli A (2013) Toxoplasma gondii and neuropsychiatric diseases: strain hypothesis. Neurol Sci 34(9):1697–1698. doi: 10.1007/s10072-012-1264-x CrossRefPubMedGoogle Scholar
  2. Berdoy M, Webster JP, Macdonald DW (1995) Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvegicus specific? Parasitology 111:403–409CrossRefPubMedGoogle Scholar
  3. Berdoy M, Webster JP, Macdonald DW (2000) Fatal attraction in rats infected with Toxoplasma gondii. Proc R Soc Biol Sci Ser B 267(1452):1591–1594CrossRefGoogle Scholar
  4. Beste C, Getzmann S, Gajewski PD, Golka K, Falkenstein M (2014) Latent Toxoplasma gondii infection leads to deficits in goal-directed behavior in healthy elderly. Neurobiol Aging 35(5):1037–1044. doi: 10.1016/j.neurobiolaging.2013.11.012
  5. Ferreira EC, Marchioro AA, Guedes TA, Mota D, Guilherme ALF, de Araujo SM (2013) Association between seropositivity for Toxoplasma gondii, scholastic development of children and risk factors for T. gondii infection. Trans R Soc Trop Med Hyg 107(6):390–396. doi: 10.1093/trstmh/trt026 CrossRefPubMedGoogle Scholar
  6. Flegr J (2010) Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol 57:81–87CrossRefPubMedGoogle Scholar
  7. Flegr J (2013a) How and why Toxoplasma makes us crazy. Trends Parasitol 29(4):156–163CrossRefPubMedGoogle Scholar
  8. Flegr J (2013b) Influence of latent Toxoplasma infection on human personality, physiology and morphology: pros and cons of the Toxoplasma-human model in studying the manipulation hypothesis. J Exp Biol 216(1):127–133. doi: 10.1242/jeb.073635 CrossRefPubMedGoogle Scholar
  9. Flegr J, Hrdý I (1994) Influence of chronic toxoplasmosis on some human personality factors. Folia Parasitol 41:122–126PubMedGoogle Scholar
  10. Flegr J, Havlíček J, Kodym P, Malý M, Šmahel Z (2002) Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case-control study. BMC Infect Dis 2:art-11Google Scholar
  11. Flegr J, Hrušková M, Hodný Z, Novotná M, Hanušová J (2005) Body height, body mass index, waist-hip ratio, fluctuating asymmetry and second to fourth digit ratio in subjects with latent toxoplasmosis. Parasitology 130:621–628CrossRefPubMedGoogle Scholar
  12. Flegr J, Lindová J, Kodym P (2008) Sex-dependent toxoplasmosis-associated differences in testosterone concentration in humans. Parasitology 135:427–431CrossRefPubMedGoogle Scholar
  13. Flegr J, Klose J, Novotná M, Berenreitterová M, Havlíček J (2009) Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect Dis 9:art. 72Google Scholar
  14. Flegr J, Lenochová P, Hodný Z, Vondrová M (2011) Fatal attraction phenomenon in humans: cat odour attractiveness increased for Toxoplasma-infected men while decreased for infected women. PLoS Neglect Trop D 5(11), e1389. doi: 10.1371/journal.pntd.0001389 CrossRefGoogle Scholar
  15. Flegr J, Geryk J, Volny J, Klose J, Cernochova D (2012a) Rhesus factor modulation of effects of smoking and age on psychomotor performance, intelligence, personality profile, and health in Czech soldiers. PLoS One 7(11), e49478. doi: 10.1371/journal.pone.0049478 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Flegr J, Guenter W, Bielinski M (2012b) Toxoplasma gondii infection affects cognitive function – corrigendum. Folia Parasitol 59:253–254CrossRefGoogle Scholar
  17. Flegr J, Preiss M, Klose J (2013) Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS One 8(4):e61272. doi: 10.1371/journal.pone.0061272 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Flegr J, Klapilová K, Kaňková Š (2014a) Toxoplasmosis can be a sexually transmitted infection with serious clinical consequences. Not all routes of infection are created equal. Med Hypotheses 83:286–289CrossRefPubMedGoogle Scholar
  19. Flegr J, Prandota J, Sovickova M, Israili ZH (2014b) Toxoplasmosis – a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One 9(3):e90203. doi: 10.1371/journal.pone.0090203 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA (2009) A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One 4, e4801PubMedCentralCrossRefPubMedGoogle Scholar
  21. Havlíček J, Gašová Z, Smith AP, Zvára K, Flegr J (2001) Decrease of psychomotor performance in subjects with latent ‘asymptomatic’ toxoplasmosis. Parasitology 122:515–520PubMedGoogle Scholar
  22. Hay J, Hutchison WM, Aitken PP, Graham DI (1983) The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation in mice. Ann Trop Med Parasitol 77:483–495PubMedGoogle Scholar
  23. Hay J, Aitken PP, Graham DI (1984a) Toxoplasma infection and response to novelty in mice. Z Parasitenkd 70:575–588CrossRefPubMedGoogle Scholar
  24. Hay J, Aitken PP, Hair DM, Hutchison WM, Graham DI (1984b) The effect of congenital Toxoplasma infection on mouse activity and relative preference for exposed areas over a series of trials. Ann Trop Med Parasitol 78:611–618PubMedGoogle Scholar
  25. Hay J, Aitken PP, Arnott MA (1985) The influence of Toxoplasma infection on the spontaneous running activity of mice. Z Parasitenkd 71:459–462CrossRefPubMedGoogle Scholar
  26. Holmes J, Bethel WM (1972) Modification of intermidiate host behaviour by parasites. In: Canning EU, Wright CA (eds) Behavioural aspects of parasite transmission. Academic, New York, pp 123–149Google Scholar
  27. Holub D et al (2013) Differences in onset of disease and severity of psychopathology between toxoplasmosis-related and toxoplasmosis-unrelated schizophrenia. Acta Psychiatr Scand 127:227–238. doi: 10.1111/acps.12031 CrossRefPubMedGoogle Scholar
  28. Horacek J et al (2012) Latent toxoplasmosis reduces gray matter density in schizophrenia but not in controls: Voxel-based-morphometry (VBM) study. World J Biol Psychiatry 13(7):501–509. doi: 10.3109/15622975.2011.573809 CrossRefPubMedGoogle Scholar
  29. Hrdá Š, Votýpka J, Kodym P, Flegr J (2000) Transient nature of Toxoplasma gondii-induced behavioral changes in mice. J Parasitol 86(4):657–663CrossRefPubMedGoogle Scholar
  30. Hutchison WM, Aitken PP, Wells BW (1980a) Chronic Toxoplasma infections and motor performance in the mouse. Ann Trop Med Parasitol 74:507–510PubMedGoogle Scholar
  31. Hutchison WM, Bradley M, Cheyne WM, Wells BWP, Hay J (1980b) Behavioural abnormalities in Toxoplasma -infected mice. Ann Trop Med Parasitol 74:337–345Google Scholar
  32. Kaňková Š, Kodym P, Frynta D, Vavřinová R, Kuběna A, Flegr J (2007a) Influence of latent toxoplasmosis on the secondary sex ratio in mice. Parasitology 134:1709–1717PubMedGoogle Scholar
  33. Kaňková Š, Šulc J, Nouzová K, Fajfrlik K, Frynta D, Flegr J (2007b) Women infected with parasite Toxoplasma have more sons. Naturwissenschaften 94:122–127CrossRefPubMedGoogle Scholar
  34. Kannan G, Moldovan K, Xiao JC, Yolken RH, Jones-Brando L, Pletnikov MV (2010) Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia Parasitol 57:151–155CrossRefPubMedGoogle Scholar
  35. Kocazeybek B et al (2009) Higher prevalence of toxoplasmosis in victims of traffic accidents suggest increased risk of traffic accident in Toxoplasma-infected inhabitants of Istanbul and its suburbs. Forensic Sci Int 187:103–108CrossRefPubMedGoogle Scholar
  36. Lafferty KD (2006) Can the common brain parasite, Toxoplasma gondii, influence human culture? Proc R Soc Biol Sci Ser B 273:2749–2755CrossRefGoogle Scholar
  37. Lester D (2010) Predicting European suicide rates with physiological indices. Psychol Rep 107:713–714CrossRefPubMedGoogle Scholar
  38. Lim A, Kumar V, Hari Dass SA, Vyas A (2013) Toxoplasma gondii infection enhances testicular steroidogenesis in rats. Mol Ecol 22(1):102–110. doi: 10.1111/mec.12042 CrossRefPubMedGoogle Scholar
  39. Lindová J et al (2006) Gender differences in behavioural changes induced by latent toxoplasmosis. Int J Parasitol 36:1485–1492CrossRefPubMedGoogle Scholar
  40. Lindová J et al (2010) Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitol 57:136–142CrossRefPubMedGoogle Scholar
  41. Nikam SS, Awasthi AK (2008) Evolution of schizophrenia drugs: a focus on dopaminergic systems. Curr Opin Invest Drugs 9:37–46Google Scholar
  42. Novotná M et al (2008) Toxoplasma and reaction time: role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology 135:1253–1261CrossRefPubMedGoogle Scholar
  43. Pearce BD et al (2013) Toxoplasma gondii exposure affects neural processing speed as measured by acoustic startle latency in schizophrenia and controls. Schizophr Res 150:258–261Google Scholar
  44. Pearce BD, Kruszon-Moran D, Jones JL (2014) The association of Toxoplasma gondii infection with neurocognitive deficits in a population-based analysis. Soc Psychiatry Psychiatr Epidemiol 49(6):1001–1010. doi: 10.1007/s00127-014-0820-5 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Piekarski G, Zippelius HM, Witting PA (1978) Auswirkungen einer latenten Toxoplasma -Infektion auf das Lernvermogen von weissen Laboratoriumsratten and Mausen. Z Parasitenkd 57:1–15CrossRefPubMedGoogle Scholar
  46. Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, McConkey GA (2011) The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One 6(9), e23866PubMedCentralCrossRefPubMedGoogle Scholar
  47. Priplatova L, Sebankova B, Flegr J (2014) Contrasting effect of prepulse signals on performance of Toxoplasma-infected and Toxoplasma-free subjects in an acoustic reaction times test. PLoS One 9(11):e112771. doi: 10.1371/journal.pone.0112771
  48. Skallová A, Kodym P, Frynta D, Flegr J (2006) The role of dopamine in Toxoplasma-induced behavioural alterations in mice: an ethological and ethopharmacological study. Parasitology 133:525–535CrossRefPubMedGoogle Scholar
  49. Stock AK, Heintschel von Heinegg E, Kohling HL, Beste C (2013) Latent Toxoplasma gondii infection leads to improved action control. Brain Behav Immun. doi: 10.1016/j.bbi.2013.11.004 PubMedGoogle Scholar
  50. Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci U S A 104:6442–6447PubMedCentralCrossRefPubMedGoogle Scholar
  51. Wang HL, Wang GH, Li QY, Shu C, Jiang MS, Guo Y (2006) Prevalence of Toxoplasma infection in first-episode schizophrenia and comparison between Toxoplasma-seropositive and Toxoplasma-seronegative schizophrenia. Acta Psychiatr Scand 114:40–48CrossRefPubMedGoogle Scholar
  52. Webster JP (1994) The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology 109:583–589CrossRefPubMedGoogle Scholar
  53. Webster JP, Brunton CFA, Macdonald DW (1994) Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology 109:37–43CrossRefPubMedGoogle Scholar
  54. Willner P (1997) The dopamine hypothesis of schizophrenia: current status, future prospects. Int Clin Psychopharmacol 12(6):297–308CrossRefPubMedGoogle Scholar
  55. Witting PA (1979) Learning capacity and memory of normal and Toxoplasma -infected laboratory rats and mice. Z Parasitenkd 61:29–51CrossRefPubMedGoogle Scholar
  56. Xiao J et al (2012) Sex-specific changes in gene expression and behavior induced by chronic Toxoplasma infection in mice. Neuroscience 206:39–48. doi: 10.1016/j.neuroscience.2011.12.051 CrossRefPubMedGoogle Scholar
  57. Xiao JC, Li Y, Jones-Brando L, Yolken RH (2013) Abnormalities of neurotransmitter and neuropeptide systems in human neuroepithelioma cells infected by three Toxoplasma strains. J Neural Transm 120(12):1631–1639. doi: 10.1007/s00702-013-1064-3 PubMedCentralCrossRefPubMedGoogle Scholar
  58. Yereli K, Balcioglu IC, Ozbilgin A (2006) Is Toxoplasma gondii a potential risk for traffic accidents in Turkey? Forensic Sci Int 163:34–37CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Section of Biology, Faculty of ScienceCharles University in PraguePragueCzech Republic

Personalised recommendations