Circulating Plasma Tumor DNA

  • Heather A. Parsons
  • Julia A. Beaver
  • Ben H. Park
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 882)


Circulating cell-free DNA (ccfDNA)—first identified in 1947—is “naked” DNA that is free-floating in the blood, and derived from both normal and diseased cells. In the 1970s, scientists observed that patients with cancer had elevated levels of ccfDNA as compared to their healthy, cancer-free counterparts. The maternal fetal medicine community first developed techniques to identify the small fraction of fetal-derived ccfDNA for diagnostic purposes. Similarly, due to the presence of tumor-specific (somatic) variations in all cancers, the fraction of circulating cell-free plasma tumor DNA (ptDNA) in the larger pool of ccfDNA derived from normal cells can serve as extremely specific blood-based biomarkers for a patient’s cancer. In theory this “liquid biopsy” can provide a real-time assessment of molecular tumor genotype (qualitative) and existing tumor burden (quantitative). Historically, the major limitation for ptDNA as a biomarker has been related to a low detection rate; however, current and developing techniques have improved sensitivity dramatically. In this chapter, we discuss these methods, including digital polymerase chain reaction and various approaches to tagged next-generation sequencing.


Circulating cell-free DNA Plasma tumor DNA Cancer biomarker Breast cancer biomarker Digital PCR Tagged next-generation sequencing 


  1. 1.
    Mandel P, Metais P (1947) Les acides nucléiques du plasma sanguin chez l’homme. C R Séances Soc Biol Fil 142:241–243Google Scholar
  2. 2.
    Antonatos D et al (2006) Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci 1075:278–281CrossRefPubMedGoogle Scholar
  3. 3.
    Lam NY-L et al (2006) Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation 68:71–78CrossRefPubMedGoogle Scholar
  4. 4.
    Sandhu HS et al (2008) Measurement of circulating neuron-specific enolase mRNA in diabetes mellitus. Ann N Y Acad Sci 1137:258–263CrossRefPubMedGoogle Scholar
  5. 5.
    Saukkonen K et al (2007) Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med 33:1624–1627CrossRefPubMedGoogle Scholar
  6. 6.
    Choi J-J, Reich CF, Pisetsky DS (2005) The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology 115(1):55–62. Accessed 22 Sept 2014CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stroun M et al (2006) The origin and mechanism of circulating DNA. Ann N Y Acad Sci 906(1):161–168. Accessed 16 Sept 2013CrossRefGoogle Scholar
  8. 8.
    Diehl F, Schmidt K, Choti MA et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14:985–990CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jahr S et al (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665. Accessed 1 Sept 2014PubMedGoogle Scholar
  10. 10.
    Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer-A survey. Biochim Biophys Acta (Reviews on Cancer) 1775:181–232PubMedGoogle Scholar
  11. 11.
    Lo YM et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang CPY et al (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 327:95–101CrossRefPubMedGoogle Scholar
  13. 13.
    Chiu TW et al (2006) Plasma cell-free DNA as an indicator of severity of injury in burn patients. Clin Chem Lab Med 44:13–17CrossRefPubMedGoogle Scholar
  14. 14.
    Diehl F et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lo YM et al (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46:319–323PubMedGoogle Scholar
  16. 16.
    Rhodes A et al (2006) Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care (London, England) 10:R60CrossRefGoogle Scholar
  17. 17.
    Wimberger P et al (2011) Impact of platinum-based chemotherapy on circulating nucleic acid levels, protease activities in blood and disseminated tumor cells in bone marrow of ovarian cancer patients. Int J Cancer (J Int Cancer) 128:2572–2580CrossRefPubMedGoogle Scholar
  18. 18.
    Dennis Lo YM, Chiu RWK (2007) Prenatal diagnosis: progress through plasma nucleic acids. Nat Rev Genet 8:71–77CrossRefGoogle Scholar
  19. 19.
    Dennis Lo YM et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487CrossRefGoogle Scholar
  20. 20.
    Herzenberg L (1979) Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A 76:1453–1455. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li Y et al (2006) Cell-free DNA in maternal plasma: is it all a question of size? Ann N Y Acad Sci 1075:81–87CrossRefPubMedGoogle Scholar
  22. 22.
    Lo YM et al (1998) Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 62:768–775CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lun FMF et al (2008) Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 54:1664–1672CrossRefPubMedGoogle Scholar
  24. 24.
    Chiu RWK, Lo YMD (2013) Clinical applications of maternal plasma fetal DNA analysis: translating the fruits of 15 years of research. Clin Chem Lab Med: CCLM/FESCC 51:197–204. Google Scholar
  25. 25.
    Chiu RWK et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Nat Acad Sci U S A 105:20458–20463CrossRefGoogle Scholar
  26. 26.
    Li Y et al (2005) Detection of paternally inherited fetal point mutations for beta-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA 293(7):843–849. Accessed 7 Oct 2014CrossRefPubMedGoogle Scholar
  27. 27.
    Lo YM (1999) Fetal RhD genotyping from maternal plasma. Ann Med 31:308–312CrossRefPubMedGoogle Scholar
  28. 28.
    Leon SA et al (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37(3):646–650. Accessed 7 Oct 2014PubMedGoogle Scholar
  29. 29.
    Allen D et al (2004) Role of cell-free plasma DNA as a diagnostic marker for prostate cancer. Ann N Y Acad Sci 1022:76–80CrossRefPubMedGoogle Scholar
  30. 30.
    Chun FKH et al (2006) Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int 98:544–548CrossRefPubMedGoogle Scholar
  31. 31.
    Schwarzenbach H et al (2008) Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci 1137:190–196CrossRefPubMedGoogle Scholar
  32. 32.
    Giacona MB et al (1998) Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas 17:89–97CrossRefPubMedGoogle Scholar
  33. 33.
    Chen XQ et al (1999) Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 5:2297–2303PubMedGoogle Scholar
  34. 34.
    Garcia JN et al (2006) Extracellular tumor DNA in plasma and overall survival in breast cancer patients. Genes Chromosomes Cancer 45:692–701CrossRefPubMedGoogle Scholar
  35. 35.
    Shinozaki M et al (2007) Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res 13:2068–2074CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Castells A et al (1999) K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol: Off J Am Soc Clin Oncol 17:578–584Google Scholar
  37. 37.
    Dianxu F et al (2002) A prospective study of detection of pancreatic carcinoma by combined plasma K-ras mutations and serum CA19-9 analysis. Pancreas 25:336–341CrossRefPubMedGoogle Scholar
  38. 38.
    Kopreski MS et al (2000) Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst 92:918–923. CrossRefPubMedGoogle Scholar
  39. 39.
    Taniguchi K et al (2011) Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 17:7808–7815CrossRefPubMedGoogle Scholar
  40. 40.
    Diaz LA Jr et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540PubMedPubMedCentralGoogle Scholar
  41. 41.
    Misale S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536PubMedPubMedCentralGoogle Scholar
  42. 42.
    Branford S (2007) Chronic myeloid leukemia: molecular monitoring in clinical practice. ASH Education Program Book, pp 376–383.\n
  43. 43.
    Yu M et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Campbell PJ et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stephens PJ et al (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462:1005–1010CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Leary RJ et al (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2:20ra14CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    McBride DJ et al (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49:1062–1069CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leary RJ et al (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 4:162ra154. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ryan BM et al (2003) A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut 52:101–108CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang S et al (2010) Potential clinical significance of a plasma-based KRAS mutation analysis in patients with advanced non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 16:1324–1330CrossRefGoogle Scholar
  51. 51.
    Boddy JL et al (2005) Prospective study of quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate disease. Clin Cancer Res 11:1394–1399CrossRefPubMedGoogle Scholar
  52. 52.
    Schwarzenbach H, Alix-Panabières C et al (2009) Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res 15:1032–1038CrossRefPubMedGoogle Scholar
  53. 53.
    Schwarzenbach H, Pantel K et al (2009) Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res 11:R71CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Diehl F, Schmidt K, Durkee KH et al (2008) Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135:489–498CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ellinger J et al (2008) CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 68:42–49CrossRefPubMedGoogle Scholar
  56. 56.
    Taback B, Saha S, Hoon DSB (2006) Comparative analysis of mesenteric and peripheral blood circulating tumor DNA in colorectal cancer patients. Ann N Y Acad Sci 1075:197–203CrossRefPubMedGoogle Scholar
  57. 57.
    Beaver JA et al (2014) Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 20(10):2643–2650. Accessed 9 July 2014CrossRefGoogle Scholar
  58. 58.
    Higgins MJ et al (2012) Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res: Off J Am Assoc Cancer Res 18(12):3462–3469. Accessed 18 Oct 2013CrossRefGoogle Scholar
  59. 59.
    Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedGoogle Scholar
  60. 60.
    Rothé F et al (2014) Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol: Off J Eur Soc Med Oncol/ESMO 25(10):1959–1965. Accessed 29 Sept 2014CrossRefGoogle Scholar
  61. 61.
    Clausen FB et al (2007) Improvement in fetal DNA extraction from maternal plasma. Evaluation of the NucliSens magnetic extraction system and the QIAamp DSP virus kit in comparison with the QIAamp DNA blood mini kit. Prenat Diagn 27(1):6–10. Accessed 7 Oct 2014CrossRefPubMedGoogle Scholar
  62. 62.
    Legler TJ et al (2008) Fetal DNA: strategies for optimal recovery. Methods Mol Biol 444:209–218CrossRefPubMedGoogle Scholar
  63. 63.
    Rodríguez de Alba M et al (2012) Noninvasive prenatal diagnosis of monogenic disorders. Expert Opin Biol Ther 12:S171–S179CrossRefGoogle Scholar
  64. 64.
    Sykes PJ et al (1992) Quantitation of targets for PCR by use of limiting dilution. BioTechniques 13(3):444–449. Accessed 1 Oct 2014PubMedGoogle Scholar
  65. 65.
    Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96(16):9236–9241. Accessed 24 Sept 2014CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Diehl F et al (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3:551–559CrossRefPubMedGoogle Scholar
  67. 67.
    Dressman D et al (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Nat Acad Sci U S A 100:8817–8822CrossRefGoogle Scholar
  68. 68.
    Li M et al (2006) BEAMing up for detection and quantification of rare sequence variants. Nat Methods 3:95–97CrossRefPubMedGoogle Scholar
  69. 69.
    Forshew T et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4(136):136ra68. Accessed 10 July 2014CrossRefPubMedGoogle Scholar
  70. 70.
    Kinde I et al (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Nat Acad Sci U S A 108(23):9530–9535. Accessed 17 Sept 2013CrossRefGoogle Scholar
  71. 71.
    Schmitt MW et al (2012) From the cover: detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci 109:14508–14513CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Itsara LS et al (2014) Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet 10(2):e1003974. Accessed 13 Aug 2014 (DM Turnbull ed.)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Breast Cancer Research Foundation 2016

Authors and Affiliations

  • Heather A. Parsons
    • 1
  • Julia A. Beaver
    • 1
  • Ben H. Park
    • 1
  1. 1.Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations