Perception of Basic Emotions from Facial Expressions of Dynamic Virtual Avatars

  • Claudia FaitaEmail author
  • Federico Vanni
  • Cristian Lorenzini
  • Marcello Carrozzino
  • Camilla Tanca
  • Massimo Bergamasco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9254)


Virtual Reality experiences featuring realistic Virtual Humans with convincing facial expressions are a useful tool to improve social skill in humans. For this reason several investigations have been carried out on the recognition of virtual avatar emotions, based on dynamic and static facial cues originated by basic emotions developed by Ekman. Dynamism and realism of facial expressions are both important aspects of the process of face-to-face interaction in everyday life. In this paper we present the results of a research aiming at investigating the impact of the combination of dynamic facial expressions corresponding to particular emotions with a high level of realism of virtual faces. A study where we have measured the level of intensity in the correspondence between facial expressions of virtual avatars and emotional stimuli perceived by an observer was carried out on two groups of participants with different expertise in Virtual Reality. Results show a high level of intensity in this correspondence in both groups through the evaluation of two variables: time response and the score assigned to each emotion. We suggest that the use of dynamic virtual avatars offers advantages for studying emotion recognition in a face in that they recreate a realistic stimuli in emotion research.


Avatar Dynamic virtual avatar Virtual Reality Facial expression 3d character Emotion perception Face perception Dynamic emotion Basic emotion 


  1. 1.
    Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124 (1971)CrossRefGoogle Scholar
  2. 2.
    Mead, M.: Visual anthropology in a discipline of words. Principles of Vis. Anthropol. 3, 3–12 (1975)MathSciNetGoogle Scholar
  3. 3.
    Ekman, P.: Are there basic emotions? Psychol. Rev. 99, 550–553 (1992)CrossRefGoogle Scholar
  4. 4.
    Adolphs, R.: Recognizing emotion from facial expressions: psychological and neurological mechanisms. Behav. Cogn. Neurosci. Rev. 1(1), 21–62 (2002)CrossRefGoogle Scholar
  5. 5.
    Leppänen, J.M., Hietanen, J.K.: Positive facial expressions are recognized faster than negative facial expressions, but why? Psychol. Res. 69(1–2), 22–29 (2004)CrossRefGoogle Scholar
  6. 6.
    Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  7. 7.
    Knight, B., Johnston, A.: The role of movement in face recognition. Vis. Cogn. 4(3), 265–273 (1997)CrossRefGoogle Scholar
  8. 8.
    Spencer-Smith, J., Wild, H., Innes-Ker, Å.H., Townsend, J., Duffy, C., Edwards, C., Ervin, K., Merritt, N., Pair, J.W.: Making faces: creating three-dimensional parameterized models of facial expression. Behav. Res. Meth., Instrum. Comput. 33(2), 115–123 (2001)CrossRefGoogle Scholar
  9. 9.
    Gutiérrez-Maldonado, J., Rus-Calafell, M., González-Conde, J.: Creation of a new set of dynamic virtual reality faces for the assessment and training of facial emotion recognition ability. Virtual Reality 18(1), 61–71 (2014)CrossRefGoogle Scholar
  10. 10.
    Dyck, M., Winbeck, M., Leiberg, S., Chen, Y., Gur, R.C., Mathiak, K.: Recognition profile of emotions in natural and virtual faces. PLoS One 3(11), e3628 (2008)CrossRefGoogle Scholar
  11. 11.
    Fabri, M., Moore, D., Hobbs, D.: Mediating the expression of emotion in educational collaborative virtual environments: an experimental study. Virtual Reality 7(2), 66–81 (2004)CrossRefGoogle Scholar
  12. 12.
    Ekman, P.: Facial expressions. Handb. Cogn. Emot. 53, 226–232 (1999)Google Scholar
  13. 13.
    Carrozzino, M., Tecchia, F., Bacinelli, S., Cappelletti, C., Bergamasco, M.: Lowering the development time of multimodal interactive application: the real-life experience of the xvr project. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 270–273. ACM (2005)Google Scholar
  14. 14.
    Gillies, M., Spanlang, B.: Comparing and evaluating real time character engines for virtual environments. Presence: Teleoperators Virtual Environ. 19(2), 95–117 (2010)CrossRefGoogle Scholar
  15. 15.
    Normand, J.-M., Spanlang, B., Tecchia, F., Carrozzino, M., Swapp, D., Slater, M.: Full body acting rehearsal in a networked virtual environmenta case study. Presence: Teleoperators Virtual Environ. 21(2), 229–243 (2012)CrossRefGoogle Scholar
  16. 16.
    Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime performance-based facial animation. ACM Trans. Graph. (TOG) 30(4), 77 (2011). ACMCrossRefGoogle Scholar
  17. 17.
    Bouaziz, S., Wang, Y., Pauly, M.: Online modeling for realtime facial animation. ACM Trans. Graph. (TOG) 32(4), 40 (2013)CrossRefGoogle Scholar
  18. 18.
    Terraciano, A., McCrae, R.R., Costa Jr., P.T.: Factorial and construct validity of the italian positive and negative affect schedule (panas). Eur. J. Psychol. Assess. 19(2), 131 (2003)CrossRefGoogle Scholar
  19. 19.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the panas scales. J. Pers. Soc. Psychol. 54(6), 1063 (1988)CrossRefGoogle Scholar
  20. 20.
    Manly, B.F.: Randomization, Bootstrap and Monte Carlo Methods in Biology, vol. 70. CRC Press, Boca Raton (2006)Google Scholar
  21. 21.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57(1), 289–300 (1995)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Kohler, C.G., Turner, T.H., Bilker, W.B., Brensinger, C.M., Siegel, S.J., Kanes, S.J., Gur, R.E., Gur, R.C.: Facial emotion recognition in schizophrenia: intensity effects and error pattern. Am. J. Psychiatry 160(10), 1768–1774 (2003)CrossRefGoogle Scholar
  23. 23.
    Moser, E., Derntl, B., Robinson, S., Fink, B., Gur, R.C., Grammer, K.: Amygdala activation at 3t in response to human and avatar facial expressions of emotions. J. Neurosci. Meth. 161(1), 126–133 (2007)CrossRefGoogle Scholar
  24. 24.
    Yee, N., Bailenson, J.N., Rickertsen, K.: A meta-analysis of the impact of the inclusion and realism of human-like faces on user experiences in interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1–10. ACM (2007)Google Scholar
  25. 25.
    Slater, M., Frisoli, A., Tecchia, F., Guger, C., Lotto, B., Steed, A., Pfurtscheller, G., Leeb, R., Reiner, M., Sanchez-Vives, M.V., et al.: Understanding and realizing presence in the presenccia project. IEEE Comput. Graph. Appl. 27(4), 90–93 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claudia Faita
    • 1
    Email author
  • Federico Vanni
    • 1
  • Cristian Lorenzini
    • 1
  • Marcello Carrozzino
    • 1
  • Camilla Tanca
    • 1
  • Massimo Bergamasco
    • 1
  1. 1.PERCRO Perceptual Robotics Laboratory, Institute of Communication Information and Perception TechnologiesScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations