Serious Games for Rehabilitation Using Head-Mounted Display and Haptic Devices

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9254)


In the health domain, the field of rehabilitation suffers from a lack specialized staff while hospital costs only increase. Worse, almost no tools are dedicated to motivate patients or help the personnel to carry out monitoring of therapeutic exercises. This paper demonstrates the high potential that can bring the virtual reality with a platform of serious games for the rehabilitation of the legs involving a head-mounted display and haptic robot devices. We first introduce SG principles, nowadays rehabilitation context, and an original applied haptic device called Lambda Health System. The architecture of the model is then detailed, including communication specifications showing that lag is imperceptible for user. Finally, to improve this prototype, four serious games for rehabilitation using haptic robots and/or HMD were tested by 33 health specialists.


Serious games Virtual reality Rehabilitation Haptic robot Head-mounted display Health application 



This work was supported by the University of Applied Sciences Western Switzerland (HES-SO) interdisciplinary grant (contract no. 13IT25-S37771) as apart of the Serious Games for Rehabilitation project. We would like to thank all the health professionals that participated to the investigation or contributed otherwise to this project; many thanks are also to the CHUV (Lausanne University Hospital, Switzerland) for hosting the investigation team and the equipment for these tests. We also would like to thank Prof. François Birling, Prof. Yassin Rekik, Mr. Gael Boquet, Nicolas Perret, and Mr. François Rémy for there respective contributions.


  1. [AEI+08]
    Alamri, A., Eid, M., Iglesias, R., Shirmohammadi, S., El Saddik, A.: Haptic virtual rehabilitation exercises for poststroke diagnosis. IEEE Trans. Instrum. Meas. 57(9), 1876–1884 (2008)CrossRefGoogle Scholar
  2. [BB14]
    Brahnam, S., Brooks, A.L.: Two innovative healthcare technologies at the intersection of serious games, alternative realities and play therapy. In: Innovation in Medicine and Healthcare. IOS Press (2014)Google Scholar
  3. [BW05]
    Barnes, M.P., Ward, A.P.: Oxford University Press (2005)Google Scholar
  4. [BWFB03]
    Barreca, S., Wolf, S.L., Fasoli, S., Bohannon, R.: Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil. Neural Repair 17(4), 220–226 (2003)CrossRefGoogle Scholar
  5. [Cla94]
    Clavel, R.: Robots paralleles. Techniques de lIngenieur, traite Informatique industrielle (1994)Google Scholar
  6. [Dob05]
    Dobkin, B.H.: Rehabilitation after stroke. Engl. J. Med. (Proceedings of NEJM) 16, 1677–1684 (2005)CrossRefGoogle Scholar
  7. [GAS+11]
    Gobron, S., Ahn, J., Silvestre, Q., Thalmann, D., Rank, S., Skowron, M., Paltoglou, G., Thelwall, M..: An interdisciplinary vr-architecture for 3d chatting with non-verbal communication. In: Coquillart, S., Steed, A., Welch, G. (eds.) EGVE/EuroVR, pp. 87–94. Eurographics Association, 20–21 September 2011Google Scholar
  8. [HACH+04]
    Hayward, V., Astley, O.R., Cruz-Hernandez, M., Grant, D., Gabriel, R.T.: Haptic interfaces and devices. Sensor Rev. 24(1), 16–29 (2004)CrossRefGoogle Scholar
  9. [HLS+13]
    Hannig, A., Lemos, M., Spreckelsen, C., Ohnesorge-Radtke, U., Rafai, N.: Skills-o-mat: Computer supported interactive motion- and game-based training in mixing alginate in dental education. J. Educ. Comput. Res. 48(3), 315–343 (2013)Google Scholar
  10. [Hog85]
    Hogan, N.: Impedance control: an approach to manipulation. J. Dyn. Syst. Meas. Contr. Trans. ASME 107(1), 1–24 (1985)zbMATHCrossRefGoogle Scholar
  11. [HSV+09]
    Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)CrossRefGoogle Scholar
  12. [IWB+99]
    Lacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., Rizzolatti, G.: Cortical mechanisms of human imitation. Science 286(1), 2526–2528 (1999)CrossRefGoogle Scholar
  13. [LCP09]
    Langhorn, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754 (2009)CrossRefGoogle Scholar
  14. [LCS+11]
    Lange, B., Chang, C.Y., Suma, E., Newman, B.A., Rizzo, S., Bolas, M.: Development and evaluation of low cost game-based balance rehabilitation tool using the microsoft kinect sensor. In: Annual international conference of the IEEE on Engineering in Medicine and Biology Society, EMBC 2011, pp. 1831–1834. IEEE (2011)Google Scholar
  15. [MG05]
    Mattar, A.A.G., Gribble, P.L.: Motor learning by observing. Neuron 46(1), 153–160 (2005)CrossRefGoogle Scholar
  16. [MJA14]
    Ma, M., Jain, L.C., Anderson, P.: VirtuaL, Augmented Reality and Serious Games for Healthcare 1. Springer, Berlin (2014)CrossRefGoogle Scholar
  17. [NLCZ+]
    Nichols-Larsen, D.S., Clark, P.C., Zeringue, A., Greenspan, A., Blanton, S.: Factors influencing stroke survivors quality of life during subacute recoveryGoogle Scholar
  18. [RC04]
    Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  19. [RFDC09]
    Rizzolatti, G., Fabbri-Destro, M., Craighero, L.: Mirror neurons and their clinical relevance. Nat. Clin. Pract. Neurol. 5(1), 24–34 (2009)CrossRefGoogle Scholar
  20. [RL11]
    Ratey, J.J., Loehr, J.E.: The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev. Neurosci. 22(2), 171–185 (2011)CrossRefGoogle Scholar
  21. [RMJ+05]
    Rizzo, A., McLaughlin, M., Jung, Y.B., Peng, W., Yeh, S.C., Zhu, W.R.: Virtual therapeutic environments with haptics: an interdisciplinary approach for developing post-stroke rehabilitation systems. In: Arabnia, H.R. (ed.):Proceedings of the 2005 International Conference on Computers for People with Special Needs, CPSN 2005, pp. 70–76, Arabnia, HR, 20 June–23 September 2005Google Scholar
  22. [RRDV+15]
    Rodriguez, A., Rey, B., Vara, M.D., Wrzesien, M., Alcaniz, M., Banos, R.M., Perez-Lopez, D.: A vr-based serious game for studying emotional regulation in adolescents. IEEE Comput. Graphics Appl. 35(1), 65–73 (2015)CrossRefGoogle Scholar
  23. [SCCC08]
    Stefan, K., Classen, J., Celnik, P., Cohen, L.G.: Concurrent action observation modulates paractice-induced motor memory formation. Eur. J. Neurosci. 27(3), 730–738 (2008)CrossRefGoogle Scholar
  24. [SCD+05]
    Stefan, K., Cohen, L.G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., Ungerleider, L., Classen, J.: Formation of a motor memory by action observation. J. Neurosci. 25(41), 9339–9346 (2005)CrossRefGoogle Scholar
  25. [SCK+10]
    Sabri, H., Cowan, B., Kapralos, B., Porte, M., Backstein, D., Dubrowskie, A.: Serious games for knee replacement surgery procedure education and training. Procedia Soc. Behav. Sci. (Innovation and Creativity in Education) 2(2), 3483–3488 (2010)CrossRefGoogle Scholar
  26. [SF12]
    Sale, P., Franceschini, M.: Action observation and mirror neuron network: a tool for motor stroke rehabilitation. Eur. J. Phys. Rehabil. Med. 48(2), 313–318 (2012)Google Scholar
  27. [WWM+06]
    Wolf, S.L., Winstein, C.J., Miller, J.P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K.E., Nichols-Larsen, D.S.: Effect of constraint induced movement therapy on upper extremity function 3 to 9 months after stroke: the exite randomized clinical trial. J. Am. Med. Assoc. 296(17), 2095–2104 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of EngineeringHE-Arc, HES-SONeuchâtelSwitzerland
  2. 2.Biomedical Engineering GroupHEIG-VD, HES-SOYverdon-les-BainsSwitzerland
  3. 3.Lambda Health System SAYverdonSwitzerland
  4. 4.Robotics LaboratoryHepia, HES-SOGenevaSwitzerland
  5. 5.University of Health Sciences, HES-SOLausanneSwitzerland
  6. 6.Service of Neuropsychology and NeurorehabilitationCHUVLausanneSwitzerland

Personalised recommendations